【題目】解下列方程:
(1)(2x﹣1)2 =16 (2)(x﹣1)3+27=0;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y=(m≠0)的圖象交于A、B兩點(diǎn),與x軸交于C點(diǎn),點(diǎn)A的坐標(biāo)為(n,6),點(diǎn)C的坐標(biāo)為(﹣2,0),且tan∠ACO=2.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求點(diǎn)B的坐標(biāo);
(3)在x軸上求點(diǎn)E,使△ACE為直角三角形.(直接寫出點(diǎn)E的坐標(biāo))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
(1)線段AB的長度為 個(gè)單位長度,點(diǎn)M表示的數(shù)為 .
(2)當(dāng)點(diǎn)Q運(yùn)動(dòng)到點(diǎn)M時(shí),點(diǎn)P運(yùn)動(dòng)到點(diǎn)N,則MN的長度為 個(gè)單位長度.
(3)設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒.是否存在這樣的t,使PA+QA為5個(gè)單位長度?如果存在,請(qǐng)求出t的值和此時(shí)點(diǎn)P表示的數(shù);如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知MB=ND,∠MBA=∠NDC,下列條件中不能判定△ABM≌△CDN的是( )
A.∠M=∠N B.AM=CN C.AB=CD D.AM∥CN
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,ABCD四個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,1),C(5,2),D(2,2),直線l:y=kx+b與直線y=﹣2x平行.
(1)k= ;
(2)若直線l過點(diǎn)D,求直線l的解析式;
(3)若直線l同時(shí)與邊AB和CD都相交,求b的取值范圍;
(4)若直線l沿線段AC從點(diǎn)A平移至點(diǎn)C,設(shè)直線l與x軸的交點(diǎn)為P,問是否存在一點(diǎn)P,使△PAB為等腰三角形?若存在,直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠DAB+∠D=180°,AC平分∠DAB,且∠CAD=25°,∠B=95°
(1)求∠DCA的度數(shù);
(2)求∠DCE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一元二次方程x2﹣2x﹣a=0無實(shí)數(shù)根,則一次函數(shù)y=(a+1)x+(a﹣1)不經(jīng)過( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com