【題目】如圖,點(diǎn)P為反比例函數(shù)y=(x>0)圖象上一點(diǎn),以點(diǎn)P為圓心作圓,且該圓恰與兩坐標(biāo)軸都相切.在y軸任取一點(diǎn)E,連接PE并過點(diǎn)P作直線PE的垂線與x軸交于點(diǎn)F,則線段OE與線段OF的長度可能滿足的數(shù)量關(guān)系式是 .
【答案】OF﹣OE=2或OE﹣OF=2或OF+OE=2.
【解析】
試題分析:設(shè)以P為圓心的⊙P與兩坐標(biāo)軸相切的切點(diǎn)分別為B,A,如圖,連接PB,PA,
利用P點(diǎn)在雙曲線y=(x>0)圖象上且以P為圓心的⊙P與兩坐標(biāo)軸都相切,求出P點(diǎn)坐標(biāo),再利用△BPE≌△APF,分三種情況列出OE與OF之間的關(guān)系.∵點(diǎn)P在雙曲線y=(x>0)上,以P為圓心的⊙P與兩坐標(biāo)軸都相切,PB=PA,∴P(1,1),又∵PF⊥PE,∴∠EPF=90°,∵∠BPE+∠EPA=90°,∵∠EPA+∠FPA=90°,∴∠FPA=∠BPE,在△BPE和△APF中,∴△BPE≌△APF,∴AF=BE.①當(dāng)F在x軸的正半軸,且OF>1時(shí),則有OF﹣OA=OB+OE,即OF﹣1=1+OE,∴OF﹣OE=2;②當(dāng)F在x軸的負(fù)半軸時(shí),則有OF+OA=OE﹣OB,即OF+1=OE﹣1,∴OE﹣OF=2;③當(dāng)F在x軸的正半軸,且OF<1時(shí),則有OA﹣OF=OE﹣OB,即1﹣OF=OE﹣1,∴OF+OE=2,綜上,線段OE與線段OF的長度可能滿足的數(shù)量關(guān)系式是:OF﹣OE=2或OE﹣OF=2或OF+OE=2,故答案為:OF﹣OE=2或OE﹣OF=2或OF+OE=2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若三角形中最大內(nèi)角是60°,則這個(gè)三角形是( )
A.不等邊三角 B.等腰三角形 C.等邊三角形 D.不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,反比例函數(shù)y=(x>0)的圖象與四邊形ABOC兩邊AC、AB分別交于點(diǎn)E、F,點(diǎn)E為AC的中點(diǎn).
(1)如圖1,當(dāng)四邊形ABOC為正方形,k=2時(shí),BF:FA= .
(2)如圖2,當(dāng)四邊形ABOC為矩形(AC≠AB),k=2時(shí),BF:FA= .
(3)在(2)中,若k為不等于0的任意實(shí)數(shù),BF:FA的值與(1)或(2)相同嗎?請證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司年前繳稅20萬元,今年繳稅24.2萬元.若該公司這兩年的年均增長率相同,設(shè)這個(gè)增長率為x,則列方程( )
A.20(1+x)3=24.2
B.20(1﹣x)2=24.2
C.20+20(1+x)2=24.2
D.20(1+x)2=24.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市出租車起步價(jià)是5元(3公里及3公里以內(nèi)為起步價(jià)),以后每公里收費(fèi)是1.6元,不足1公里按1公里收費(fèi),小明乘出租車到達(dá)目的地時(shí)計(jì)價(jià)器顯示為11.4元,則此出租車行駛的路程可能為( )
A. 5.5公里 B. 6.9公里 C. 7.5公里 D. 8.1公里
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表記錄了甲、乙、丙、丁四名射擊運(yùn)動員最近幾次選拔賽成績的平均數(shù)和方差:
甲 | 乙 | 丙 | 丁 | |
平均數(shù)(環(huán)) | 8.9 | 9.1 | 8.9 | 9.1 |
方差 | 3.3 | 3.8 | 3.8 | 3.3 |
根據(jù)表中數(shù)據(jù),要從中選擇一名成績好且發(fā)揮穩(wěn)定的運(yùn)動員參加比賽,應(yīng)選擇( )
A.丁
B.丙
C.乙
D.甲
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com