如下圖,直線y=kx+6分別與x軸、y軸相交于點(diǎn)E和點(diǎn)F,點(diǎn)E的坐標(biāo)為(﹣8,0),點(diǎn)A的坐標(biāo)為(0,6)。
(1)求k的值;
(2)若點(diǎn)P(x,y)是第二象限內(nèi)的直線上的一個動點(diǎn),當(dāng)點(diǎn)P運(yùn)動過程中,試寫出△OPA的面積S與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)探究:當(dāng)P運(yùn)動到什么位置時,△OPA的面積為,并說明理由。
解:(1)∵直線y=kx+6分別與x軸、y軸相交于點(diǎn)E和點(diǎn)F,點(diǎn)E的坐標(biāo)為(﹣8,0),
∴0=﹣8k+6,
∴k=;
(2)如下圖,過P作PH⊥OA于H,

∵點(diǎn)P(x,y)是第二象限內(nèi)的直線上的一個動點(diǎn),
∴PH=﹣x,而點(diǎn)A的坐標(biāo)為(0,6),
∴S=×6(﹣x)=﹣3x(﹣8<x<0);
(3)當(dāng)S=時,x=﹣,
∴y=+6=
∴P坐標(biāo)為(﹣,)。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知一元二次方程x2-4x-5=0的兩個實(shí)數(shù)根為x1、x2,且x1<x2.若x1、x2分別是拋物線精英家教網(wǎng)y=-x2+bx+c與x軸的兩個交點(diǎn)A、B的橫坐標(biāo)(如下圖所示).
(1)求該拋物線的解析式;
(2)設(shè)(1)中的拋物線與y軸的交點(diǎn)為C,拋物線的頂點(diǎn)為D,請直接寫出點(diǎn)C、D的坐標(biāo)并求出四邊形ABDC的面積;
(3)是否存在直線y=kx(k>0)與線段BD相交且把四邊形ABDC的面積分為相等的兩部分?若存在,求出k的值;若不存在,請說明理由.
[注:拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為(-
b
2a
,
4ac-b2
4a
)].

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》中考題集(38):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

已知一元二次方程x2-4x-5=0的兩個實(shí)數(shù)根為x1、x2,且x1<x2.若x1、x2分別是拋物線y=-x2+bx+c與x軸的兩個交點(diǎn)A、B的橫坐標(biāo)(如下圖所示).
(1)求該拋物線的解析式;
(2)設(shè)(1)中的拋物線與y軸的交點(diǎn)為C,拋物線的頂點(diǎn)為D,請直接寫出點(diǎn)C、D的坐標(biāo)并求出四邊形ABDC的面積;
(3)是否存在直線y=kx(k>0)與線段BD相交且把四邊形ABDC的面積分為相等的兩部分?若存在,求出k的值;若不存在,請說明理由.
[注:拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為()].

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(36):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

已知一元二次方程x2-4x-5=0的兩個實(shí)數(shù)根為x1、x2,且x1<x2.若x1、x2分別是拋物線y=-x2+bx+c與x軸的兩個交點(diǎn)A、B的橫坐標(biāo)(如下圖所示).
(1)求該拋物線的解析式;
(2)設(shè)(1)中的拋物線與y軸的交點(diǎn)為C,拋物線的頂點(diǎn)為D,請直接寫出點(diǎn)C、D的坐標(biāo)并求出四邊形ABDC的面積;
(3)是否存在直線y=kx(k>0)與線段BD相交且把四邊形ABDC的面積分為相等的兩部分?若存在,求出k的值;若不存在,請說明理由.
[注:拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為()].

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:同步題 題型:單選題

如下圖,直線y=kx+b(k<0)與x軸交于點(diǎn)(3,0),關(guān)于x的不等式kx+b>0的解集是
[     ]

A.x<3
B.x>3
C.x>0
D.x<0

查看答案和解析>>

同步練習(xí)冊答案