【題目】拋物線y=ax2+bx+c的對(duì)稱軸為直線x=1,部分圖象如圖所示,下列判斷中:

①4acb2;

abc

③一次函數(shù)y=ax+c的圖象不經(jīng)第四象限;

mam+b+bam是任意實(shí)數(shù));

⑤3b+2c0

其中正確的個(gè)數(shù)是( 。

A.1B.2C.3D.4

【答案】A

【解析】

利用拋物線與x軸交點(diǎn)個(gè)數(shù)可對(duì)①進(jìn)行判斷;利用拋物線開(kāi)口方向得到a0,利用拋物線的對(duì)稱軸方程得到b=2a0,利用拋物線與y軸的交點(diǎn)位置得到c0,則可對(duì)②進(jìn)行判斷;根據(jù)一次函數(shù)的性質(zhì)可對(duì)③進(jìn)行判斷;根據(jù)當(dāng)x=1時(shí),二次函數(shù)有最小值,可對(duì)④進(jìn)行判斷;利用拋物線的對(duì)稱性得到拋物線與x軸的另一個(gè)交點(diǎn)坐標(biāo),利用ab得到3b+2c=0,則可對(duì)⑤進(jìn)行判斷.

∵拋物線與x軸有兩個(gè)交點(diǎn),∴b24ac0,即4acb2,∴①正確;

∵拋物線開(kāi)口向上,∴a0

∵拋物線的對(duì)稱軸為直線x1,∴b=2a0

∵拋物線與y軸的交點(diǎn)在x軸下方,∴c0,∴bac,∴②錯(cuò)誤;

a0,c0,∴一次函數(shù)y=ax+c的圖象經(jīng)過(guò)一三四象限,不過(guò)第二象限,∴③錯(cuò)誤;

∵拋物線的對(duì)稱軸為直線x=1,∴當(dāng)x=1時(shí),函數(shù)有最小值y=ab+c,∴am2+bm+cab+c,即mam+b+ba,∴④錯(cuò)誤;

∵拋物線與x軸的一個(gè)交點(diǎn)坐標(biāo)為(10),對(duì)稱軸為直線x=1,∴拋物線與x軸的另一個(gè)交點(diǎn)坐標(biāo)為(﹣30),∴9a3b+c=0,∴18a6b+2c=0

b=2a,則ab,∴9b6b+2c=0,即3b+2c=0,∴⑤錯(cuò)誤.

故選A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,點(diǎn)DAB上的一點(diǎn),連接CDCEAB,BECD,且CE=AD.

(1)求證:四邊形BDCE是菱形;

(2)過(guò)點(diǎn)EEFBD,垂足為點(diǎn)F,若點(diǎn)FBD的中點(diǎn),EB=6,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形中,,,點(diǎn)從點(diǎn)出發(fā),以每秒的速度沿折線方向運(yùn)動(dòng),點(diǎn)從點(diǎn)出發(fā),以每秒的速度沿線段方向向點(diǎn)運(yùn)動(dòng)、已知?jiǎng)狱c(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)時(shí),點(diǎn),停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒,在這個(gè)運(yùn)動(dòng)過(guò)程中,若的面積為,則滿足條件的的值有(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)將每件進(jìn)價(jià)為80元的A商品按每件100元出售,一天可售出128件.經(jīng)過(guò)市場(chǎng)調(diào)查,發(fā)現(xiàn)這種商品的銷售單價(jià)每降低1元,其日銷量可增加8件.設(shè)該商品每件降價(jià)x元,商場(chǎng)一天可通過(guò)A商品獲利潤(rùn)y元.

(1)求y與x之間的函數(shù)解析式(不必寫出自變量x的取值范圍)

(2)A商品銷售單價(jià)為多少時(shí),該商場(chǎng)每天通過(guò)A商品所獲的利潤(rùn)最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)Py軸的正半軸上,⊙Px軸于B、C兩點(diǎn),以AC為直角邊作等腰RtACD,BD分別交y軸和⊙PEF兩點(diǎn),連接AC、FC

(1)求證:∠ACF=ADB;

(2)若點(diǎn)ABD的距離為m,BF+CF=n,求線段CD的長(zhǎng);

(3)當(dāng)⊙P的大小發(fā)生變化而其他條件不變時(shí),的值是否發(fā)生變化?若不發(fā)生變化,請(qǐng)求出其值;若發(fā)生變化,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】泉州市旅游資源豐富,①清源山、②開(kāi)元寺、③崇武古城三個(gè)景區(qū)是人們節(jié)假日玩的熱點(diǎn)景區(qū),張老師對(duì)八(1)班學(xué)生五·一小長(zhǎng)假隨父母到這三個(gè)景區(qū)游玩的計(jì)劃做了全面調(diào)查,調(diào)查分四個(gè)類別:A、游三個(gè)景區(qū);B,游兩個(gè)景區(qū);C,游一個(gè)景區(qū):D,不到這三個(gè)景區(qū)游玩現(xiàn)根據(jù)調(diào)查結(jié)果繪制了不完整的條形統(tǒng)計(jì)圖和廟形統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中信息解答下列問(wèn)題:

1)八(1)班共有學(xué)生   人在扇形統(tǒng)計(jì)圖中,表示B類別的扇形的圓心角的度數(shù)為   

2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)若小華、小剛兩名同學(xué),各自從三個(gè)最區(qū)中隨機(jī)選一個(gè)作為51日游玩的景區(qū),請(qǐng)用樹(shù)狀圖或列表法求他們選中同個(gè)景區(qū)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,已知AB2,∠B30°,AC.則SABC_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程.

1)證明該方程一定有兩個(gè)不相等的實(shí)數(shù)根;

2)設(shè)該方程兩根為x1、x2x1<x2.

①當(dāng)時(shí),試確定y值的范圍;

②如圖,平面直角坐標(biāo)系中有三點(diǎn)A、B、C,坐標(biāo)分別為(x1,0)、(x2,3)、(7,0.以點(diǎn)C為圓心,2個(gè)單位長(zhǎng)度為半徑的圓與直線AB相切,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把某矩形紙片ABCD沿EF,GH折疊(點(diǎn)EHAD邊上,點(diǎn)F,GBC邊上),使點(diǎn)B和點(diǎn)C落在AD邊上同一點(diǎn)P處,A點(diǎn)的對(duì)稱點(diǎn)為A點(diǎn),D點(diǎn)的對(duì)稱點(diǎn)為D點(diǎn),若∠FPG90°,△A′EP的面積為5,△DPH的面積為20,則矩形ABCD的面積等于_____

查看答案和解析>>

同步練習(xí)冊(cè)答案