如圖所示,P是直線PO上一點,其坐標是(-4,2),則sin∠POE的值是   
【答案】分析:過P點作PQ⊥y軸于點Q,則OQ=2,PQ=4,在直角△OPQ中,先利用勾股定理求出斜邊OP的長,再根據(jù)正弦函數(shù)的定義求解.
解答:解:如圖,過P點作PQ⊥y軸于點Q,則OQ=2,PQ=4,
在直角△OPQ中,∠OQP=90°,由勾股定理,得
OP==2,
所以sin∠POE===
故sin∠POE的值是
點評:主要考查了點的坐標的意義,勾股定理以及銳角三角函數(shù)的定義,屬于基礎題,通過作輔助線構造直角三角形是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,O是直線AB上一點,∠AOC=
13
∠BOC,OC是∠AOD的平分線.
(1)求∠COD的度數(shù).
(2)判斷OD與AB的位置關系,并說出理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•廣安)已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,對稱軸是直線x=1.下列結論:
①abc>O,②2a+b=O,③b2-4ac<O,④4a+2b+c>O
其中正確的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知拋物線y=ax2+bx+c(a≠0)在平面直角坐標系中的位置如圖所示,對稱軸是直線x=
1
3
.則下列結論中,正確的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,O是直線AC上一點,OB是一條射線,OD平分∠AOB,OE在∠BOC內,∠BOE=
13
∠EOC,∠DOE=60°.
(Ⅰ)求∠EOC的度數(shù);
(Ⅱ)在上圖中,哪些角互為余角?為什么?互為補角的角有幾對?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,0是直線AB上一點,0C是∠AOB的平分線.
(1)圖中互余的角是
∠AOD與∠DOC
∠AOD與∠DOC
;
(2)圖中互補的角是
∠AOD與∠BOD、∠AOC與∠BOC
∠AOD與∠BOD、∠AOC與∠BOC

查看答案和解析>>

同步練習冊答案