如圖1,矩形OABC,O為原點(diǎn),點(diǎn)E在AB上,把△CBE沿CE折疊,使點(diǎn)B落在OA邊上的點(diǎn)D處,A、D坐標(biāo)分別為(10,0)和(6,0),拋物線y=
1
5
x2+bx+c
過點(diǎn)C、B.
(1)求B點(diǎn)的坐標(biāo)及該拋物線的解析式;
(2)如圖2,矩形PQRS的長(zhǎng)、寬一定,點(diǎn)P沿(1)中的拋物線滑動(dòng),在滑動(dòng)過程中PQ∥x軸,且RS在PQ的下方,當(dāng)P點(diǎn)橫坐標(biāo)為-1時(shí),點(diǎn)S位于x軸上方且距離x軸
11
5
個(gè)單位.當(dāng)矩形PQRS在滑動(dòng)過程中被x軸分成上下兩部分的面積比為2:3時(shí),求點(diǎn)P的坐標(biāo);
(3)如圖3,動(dòng)點(diǎn)M、N同時(shí)從點(diǎn)O出發(fā),點(diǎn)M以每秒3個(gè)單位長(zhǎng)度的速度沿線段OD運(yùn)動(dòng),點(diǎn)N以每秒8個(gè)單位長(zhǎng)度的速度沿折線OCD按O→C→D的路線運(yùn)動(dòng),當(dāng)M、N中的其中一點(diǎn)停止運(yùn)動(dòng)時(shí),另一點(diǎn)也停止運(yùn)動(dòng).設(shè)M、N同時(shí)從點(diǎn)O出發(fā)t秒時(shí),△OMN的面積為S.求S與t的函數(shù)關(guān)系式,并寫出t的取值范圍.
分析:(1)根據(jù)折疊的性質(zhì)可知:CD=CB,因此在已知A、D的坐標(biāo)情況下,能得到CB、CD、OD的長(zhǎng),在Rt△OCD中,利用勾股定理即可求出OC的長(zhǎng),則B點(diǎn)坐標(biāo)可求;再利用待定系數(shù)法就能求得拋物線的解析式.
(2)將點(diǎn)P的橫坐標(biāo)-1代入(1)的拋物線解析式中即可求得點(diǎn)P到x軸的距離,再由“點(diǎn)S位于x軸上方且距離x軸
11
5
個(gè)單位”即可求出PS的長(zhǎng);當(dāng)矩形PQRS的面積被x軸分割成上2下3時(shí),由于兩個(gè)小矩形的寬相同,所以它們的面積比等于長(zhǎng)的比,即此時(shí)的PS被x軸分割成上2下3的情況,結(jié)合PS的長(zhǎng),即可得到此時(shí)點(diǎn)P的縱坐標(biāo),代入拋物線的解析式中就能求得點(diǎn)P的坐標(biāo).
(3)由于點(diǎn)N的運(yùn)動(dòng)過程為:O→C→D,所以整體要分兩個(gè)階段考慮:
①點(diǎn)N在線段OC上時(shí),首先用t表達(dá)出OM、ON的長(zhǎng),以O(shè)M為底、ON為高,不難得到△OMN的面積S與t的函數(shù)關(guān)系式;
②點(diǎn)N在線段CN上時(shí),OM的長(zhǎng)易知,關(guān)鍵是求出OM上的高,先過點(diǎn)N作OD的垂線NH,由∠CDO的正弦值可求出NH的表達(dá)式,以O(shè)M為底、NH為高即可求得關(guān)于S、t的函數(shù)關(guān)系式.
解答:解:(1)由矩形OCBA得:∠COA=∠BAO=90°,OC=AB,BC=OA=10;
由△CBE沿CE翻折得到△CED,得 CD=CB=10,
由勾股定理得:OC=
CD2-OD2
=
102-62
=8
,
得:C(0,8),B(10,8);
又C、B均在y=
1
5
x2+bx+c
上,代入,得:
c=8
1
5
×100+10b+c=8
,解得
c=8
b=-2

y=
1
5
x2-2x+8


(2)當(dāng)x=-1時(shí),y=
1
5
×(-1)2-2×(-1)+8
,此時(shí)P(-1,
51
5
)

又由S距離x軸上方
11
5
個(gè)單位,得:PS=
51
5
-
11
5
=8
,∴矩形PQRS的長(zhǎng)為8.
設(shè)PQRS在下滑過程中交x軸分別于G、H兩點(diǎn).
則由題意知:
S矩形PQHG
S矩形HGSR
=
2
3
,即
PG
GS
=
2
3

PG=
2
5
PS=
16
5

故P的縱坐標(biāo)為
16
5
,設(shè)P(a,
16
5
)
,則:
1
5
a2-2a+8=
16
5
,得:a1=4,a2=6
P(4,
16
5
)
(6,
16
5
)


(3)①當(dāng)0≤t≤1時(shí),此時(shí)M在OD上,N在OC上.
S△MON=
1
2
OM•ON=
1
2
×3t×8t=12t2

②當(dāng)1<t≤2時(shí),此時(shí)M在OD上,N在CD上.則DN=18-8t
過N作NH⊥OD于H,則
NH
ND
=
OC
CD
=
4
5
,得:
NH=
4
5
DN=
4
5
(18-8t)
=
8
5
(9-4t)

S△ONM=
1
2
•NH•OM
=
1
2
×
8
5
(9-4t)•3t
=-
48
5
t2+
108
5
t
;
綜上,S=
12t2(0<t≤1)
-
48
5
t2+
108
5
t(1<t≤2)
點(diǎn)評(píng):題目的敘述和給出的圖形看起來較為復(fù)雜,但通過讀題后可以發(fā)現(xiàn)題目的難度并不大;(1)題中,利用好折疊圖形的特點(diǎn)是關(guān)鍵;(2)題中,只要求出PS的長(zhǎng)題目也就解了一大半;最后一題求的是分段函數(shù),三角形面積的求法應(yīng)熟練掌握,在對(duì)自變量進(jìn)行分段時(shí),要注意抓住“關(guān)鍵點(diǎn)”(即點(diǎn)N、C重合時(shí)),這在解答此類題目時(shí)是通用的方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,以矩形OABC的頂點(diǎn)O為原點(diǎn),OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=3,OC=2,點(diǎn)E是AB的中點(diǎn),在OA上取一點(diǎn)D,將△BDA沿BD翻折,使點(diǎn)A落在BC邊上的點(diǎn)F處.
(1)直接寫出點(diǎn)E、F的坐標(biāo);
(2)設(shè)頂點(diǎn)為F的拋物線交y軸正半軸于點(diǎn)P,且以點(diǎn)E、F、P為頂點(diǎn)的三角形是等腰三角形,求該拋物線的解析式;
(3)在x軸、y軸上是否分別存在點(diǎn)M、N,使得四邊形MNFE的周長(zhǎng)最?如果存在,求出周長(zhǎng)的最小值;如果不存在,請(qǐng)說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,將矩形OABC在直角坐標(biāo)系中A(4,0),B(4,3),將矩形OABC沿OB對(duì)折,使點(diǎn)A落在E處,并交BC于點(diǎn)F,則BF=
 
,點(diǎn)E的坐標(biāo)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在矩形OABC中,OA=8,OC=4,OA,OC分別在x,y軸上,點(diǎn)D在OA上,且CD=AD.
(1)求直線CD的函數(shù)關(guān)系式;
(2)求經(jīng)過B,C,D三點(diǎn)的拋物線的關(guān)系式;
(3)在上述拋物線上位于x軸下方的圖象上,是否存在一點(diǎn)P,使△PBC的面積等于矩形OABC的面積的
35
?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南沙區(qū)一模)將邊長(zhǎng)OA=8,OC=10的矩形OABC放在平面直角坐標(biāo)系中,頂點(diǎn)O為原點(diǎn),頂點(diǎn)C、A分別在x軸和y軸上.在OA邊上選取適當(dāng)?shù)狞c(diǎn)E,連接CE,將△EOC沿CE折疊.

(1)如圖①,當(dāng)點(diǎn)O落在AB邊上的點(diǎn)D處時(shí),點(diǎn)E的坐標(biāo)為
(0,5)
(0,5)
;
(2)如圖②,當(dāng)點(diǎn)O落在矩形OABC內(nèi)部的點(diǎn)D處時(shí),過點(diǎn)E作EG∥x軸交CD于點(diǎn)H,交BC于點(diǎn)G.求證:EH=CH;
(3)在(2)的條件下,設(shè)H(m,n),寫出m與n之間的關(guān)系式
m=
1
20
n2+5
m=
1
20
n2+5
;
(4)如圖③,將矩形OABC變?yōu)檎叫,OC=10,當(dāng)點(diǎn)E為AO中點(diǎn)時(shí),點(diǎn)O落在正方形OABC內(nèi)部的點(diǎn)D處,延長(zhǎng)CD交AB于點(diǎn)T,求此時(shí)AT的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形OABC中,已知A,C兩點(diǎn)的坐標(biāo)分別為A(4,0),C(0,2),D為OA的中點(diǎn).設(shè)點(diǎn)P是∠AOC平分線上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)O重合).
(1)試證明:無論點(diǎn)P運(yùn)動(dòng)到何處,PC總與PD相等;
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到與點(diǎn)B的距離最小時(shí),求P的坐標(biāo);
(3)已知E(1,-1),當(dāng)點(diǎn)P運(yùn)動(dòng)到何處時(shí),△PDE的周長(zhǎng)最小?求出此時(shí)點(diǎn)P的坐標(biāo)和△PDE的周長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案