【題目】如圖,AD是△ABC的角平分線,DE、DF分別是△ABD和△ACD的高,則下列結(jié)論:
①OA=OD;
②AD⊥EF;
③AE+DF=AF+DE;
④當(dāng)∠BAC=90°時(shí),四邊形AEDF是正方形.
其中一定正確的是( )

A.①②③
B.②③④
C.①③④
D.①②③④

【答案】B
【解析】解:如果OA=OD,則四邊形AEDF是矩形,∠A=90°,不符合題意,

∴①不正確;

∵AD是△ABC的角平分線,

∴∠EAD∠FAD,

在△AED和△AFD中,

∴△AED≌△AFD(AAS),

∴AE=AF,DE=DF,

∴AE+DF=AF+DE,

∴③正確;

在△AEO和△AFO中,

,

∴△AE0≌△AF0(SAS),

∴EO=FO,

又∵AE=AF,

∴AO是EF的中垂線,

∴AD⊥EF,

∴②正確;

∵當(dāng)∠A=90°時(shí),四邊形AEDF的四個(gè)角都是直角,

∴四邊形AEDF是矩形,

又∵DE=DF,

∴四邊形AEDF是正方形,

∴④正確.

綜上,可得正確的是:②③④.

所以答案是:B.

【考點(diǎn)精析】掌握線段垂直平分線的判定和角的平分線判定是解答本題的根本,需要知道和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上;可以證明三角形內(nèi)存在一個(gè)點(diǎn),它到三角形的三邊的距離相等這個(gè)點(diǎn)就是三角形的三條角平分線的交點(diǎn)(交于一點(diǎn)).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:在三角形中,把一邊的中點(diǎn)到這條邊的高線的距離叫做這條邊的中垂距.
例:如圖①,在△ABC中,D為邊BC的中點(diǎn),AE⊥BC于E,則線段DE的長叫做邊BC的中垂距.

(1)設(shè)三角形一邊的中垂距為d(d≥0).若d=0,則這樣的三角形一定是 , 推斷的數(shù)學(xué)依據(jù)是
(2)如圖②,在△ABC中,∠B=45°,AB= ,BC=8,AD為邊BC的中線,求邊BC的中垂距.

(3)如圖③,在矩形ABCD中,AB=6,AD=4.點(diǎn)E為邊CD的中點(diǎn),連結(jié)AE并延長交BC的延長線于點(diǎn)F,連結(jié)AC.求△ACF中邊AF的中垂距.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(2,0),(6,0),現(xiàn)同時(shí)將點(diǎn)A,B分別向上平移4個(gè)單位,再向右平移2個(gè)單位,分別得到點(diǎn)A,B的對(duì)應(yīng)點(diǎn)C、D,連接AC、BD

(1)求點(diǎn)CD的坐標(biāo)及四邊形ABDC的面積S四邊形ABDC

(2)y軸上是否存在一點(diǎn)P,連接PA、PB,使SPAB=S四邊形ABDC,若存在這樣一點(diǎn),求出點(diǎn)P的坐標(biāo),若不存在,試說明理由.

(3)點(diǎn)P是線段BD上的一個(gè)動(dòng)點(diǎn),連接PC,PO,當(dāng)點(diǎn)PBD上移動(dòng)時(shí)(不與B,D重合)給出下列結(jié)論:①的值不變;的值不變,其中有且只有一個(gè)是正確的,請(qǐng)你找出這個(gè)結(jié)論并求其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC的兩條高AD,BE交于點(diǎn)F,∠ABC45°,∠BAC60°

1)求證:DFDC;

2)連接CF,求證:ABAC+CF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D是△ABC內(nèi)一點(diǎn),BD⊥CD,AD=6,BD=4,CD=3,E,F(xiàn),G,H分別是AB,AC,CD,BD的中點(diǎn),則四邊形EFGH的周長是( )

A.7
B.9
C.10
D.11

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,已知AD∥BC,AB⊥BC,點(diǎn)E,F(xiàn)在邊AB上,且∠AED=45°,∠BFC=60°,AE=2,EF=2﹣ ,F(xiàn)C=2

(1)BC= ;
(2)求點(diǎn)D到BC的距離;
(3)求DC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016年國際馬拉松賽于承德市舉辦,起點(diǎn)承德市獅子園,賽道為外環(huán)路,終點(diǎn)為奧體中心(賽道基本為直線).在賽道上有A,B兩個(gè)服務(wù)點(diǎn),現(xiàn)有甲,乙兩個(gè)服務(wù)人員,分別從A,B兩個(gè)服務(wù)點(diǎn)同時(shí)出發(fā),沿直線勻速跑向終點(diǎn)C(奧體中心),如圖1所示,設(shè)甲、乙兩人出發(fā)xh后,與B點(diǎn)的距離分別為ykm、ykm,y、y與x的函數(shù)關(guān)系如圖2所示.

(1)從服務(wù)點(diǎn)A到終點(diǎn)C的距離為km,a=h;
(2)求甲乙相遇時(shí)x的值;
(3)甲乙兩人之間的距離應(yīng)不超過1km時(shí),稱為最佳服務(wù)距離,從甲、乙相遇到甲到達(dá)終點(diǎn)以前,保持最佳服務(wù)距離的時(shí)間有多長?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),A(1,3),B(2,1),直角坐標(biāo)系中存在點(diǎn)C,使得O,A,B,C四點(diǎn)構(gòu)成平行四邊形,C點(diǎn)的坐標(biāo)為______________________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名射擊運(yùn)動(dòng)員中進(jìn)行射擊比賽,兩人在相同條件下各射擊10次,射擊的成績?nèi)鐖D所示.

根據(jù)圖中信息,回答下列問題:

(1)甲的平均數(shù)是___________,乙的中位數(shù)是______________;

(2)分別計(jì)算甲、乙成績的方差,并從計(jì)算結(jié)果來分析,你認(rèn)為哪位運(yùn)動(dòng)員的射擊成績更穩(wěn)定?

查看答案和解析>>

同步練習(xí)冊答案