精英家教網 > 初中數學 > 題目詳情

【題目】根據市衛(wèi)生防疫部門的要求,游泳池必須定期換水后才能對外開放.在換水時需要經“排水一清冼一灌水”的過程.某游泳館從早上開始對游泳池進行換水,已知該游泳池的排水速度是灌水速度的倍,其中游泳池內剩余的水量與換水時間上之間的函數圖象如圖所示,根據圖象解答下列問題:

1)該游泳池清洗需要    小時.

2)求排水過程中的之間的函數關系式,并寫出自變量的取值范圍.

3)若該游泳館在換水結束分鐘后才能對外開放,判斷游泳愛好者小致能否在中午進入該游泳館游泳,并說明理由.

【答案】11.2;(2y=-800x+1200(0x1.5);(3)不能,理由見解析.

【解析】

12.7-1.5即可求解;

2)設排水過程中之間的函數關系式為,根據函數圖象經過點,待定系數法即可求解;

3)根據題意計算出對外開放時間,與12:30比較即可求解.

解:(12.7-1.5=1.2h,

2)設排水過程中之間的函數關系式為

由題意得函數圖象經過點,

解得

之間的函數關系式為;

3)由題意得排水速度為1200÷1.5=800m3/h,

∴灌水速度為800÷1.6=500 m3/h,

∴灌水時間為1200÷500=2.4h

所以對外開放時間為7+2.7+2.4+0.5=12.612.5

∴小致不能在中午進入該游泳館游泳.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在等腰ABC中,AB=AC,以AC為直徑作⊙OBC于點D,過點DDEAB,垂足為E

1)求證:DE是⊙O的切線;

2)若DE= ,∠C=30°,求的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,是半圓的直徑,.射線為半圓的切線.在上取一點,連接交半圓于點,連接.過點作的垂線,垂足為點,與相交于點.過點作半圓的切線,切點為,與相交于點

1)求證:;

2)當的面積相等時,求的長;

3)求證:當上移動時(點除外),點始終是線段的中點.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】1)問題發(fā)現

如圖1,ABC是等邊三角形,點D,E分別在邊BC,AC上,若∠ADE60°,則AB,CEBD,DC之間的數量關系是   

2)拓展探究

如圖2,ABC是等腰三角形,ABAC,∠Bα,點D,E分別在邊BC,AC上.若∠ADEα,則(1)中的結論是否仍然成立?請說明理由.

3)解決問題

如圖3,在ABC中,∠B30°ABAC4cm,點P從點A出發(fā),以1cm/s的速度沿A→B方向勾速運動,同時點M從點B出發(fā),以cm/s的速度沿B→C方向勻速運動,當其中一個點運動至終點時,另一個點隨之停止運動,連接PM,在PM右側作∠PMG30°,該角的另一邊交射線CA于點G,連接PC.設運動時間為ts),當△APG為等腰三角形時,直接寫出t的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某地區(qū)為了加大退耕還林的力度,出臺了一系列的激勵措施:在退耕還林過程中,每一年的林地面積達到10畝且每年的林地面積在增加的農戶,當年都可得生活補貼費2000元,且每超過10畝的部分還給予獎勵每畝a元,在林間還有套種其他農作物,平均每畝還有b元的收入.

下表是某農戶在頭兩年通過退耕還林每年獲得的總收入情況:

(注:年總收入=生活補貼量+政府獎勵量+種農作物收入)

1)試根據以上提供的資料確定a、b的值.

2)從2003年起,如果該農戶每年新增林地的畝數比前一年按相同的增長率增長,那么2005年該農戶獲得的總收入達到多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】平面直角坐標系中,以點P(2,a)為圓心的⊙Py軸相切,直線y=x與⊙P相交于點A、B,且AB的長為2,則a的值為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,ABC三個頂點坐標分別為A(-24),B(-2,1),C(-5,2)

1)請畫出ABC關于x軸對稱的A1B1C1;

2)將A1B1C1的三個頂點的橫坐標與縱坐標同時乘-2,得到對應的點A2,B2,C2,請畫出A2B2C2;

3A1B1C1A2B2C2面積之比為 (不寫解答過程,直接寫出結果)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,△ABC的頂點A,C分別是直線y=x+4與坐標軸的交點,點B的坐標為(﹣2,0),點D是邊AC上的一點,DEBC于點E,點F在邊AB上,且DF兩點關于y軸上的某點成中心對稱,連結DFEF.設點D的橫坐標為m,EF2l,請?zhí)骄浚?/span>

①線段EF長度是否有最小值.

②△BEF能否成為直角三角形.

小明嘗試用觀察﹣猜想﹣驗證﹣應用的方法進行探究,請你一起來解決問題.

1)小明利用幾何畫板軟件進行觀察,測量,得到lm變化的一組對應值,并在平面直角坐標系中以各對應值為坐標描點(如圖2).請你在圖2中連線,觀察圖象特征并猜想lm可能滿足的函數類別.

2)小明結合圖1,發(fā)現應用三角形和函數知識能驗證(1)中的猜想,請你求出l關于m的函數表達式及自變量的取值范圍,并求出線段EF長度的最小值.

3)小明通過觀察,推理,發(fā)現△BEF能成為直角三角形,請你求出當△BEF為直角三角形時m的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C是圓上一點,點D是半圓的中點,連接CDOB于點E,點FAB延長線上一點,CFEF

1)求證:FC是⊙O的切線;

2)若CF5,,求⊙O半徑的長.

查看答案和解析>>

同步練習冊答案