【題目】已知:如圖,在矩形ABCD中,點(diǎn)O在對(duì)角線BD上,以OD的長(zhǎng)為半徑的⊙OAD,BD分別交于點(diǎn)E、點(diǎn)F,且∠ABE=DBC.

(1)判斷直線BE與⊙O的位置關(guān)系,并證明你的結(jié)論;

(2)若sinABE=,CD=2,求⊙O的半徑.

【答案】(1)直線BE與⊙O相切,證明見(jiàn)解析;(2)O的半徑為

【解析】分析:1)連接OE,根據(jù)矩形的性質(zhì),可證∠BEO=90°,即可得出直線BE與⊙O相切;

2)連接EF,先根據(jù)已知條件得出BD的值,再在△BEO,利用勾股定理推知BE的長(zhǎng),設(shè)出⊙O的半徑為r利用切線的性質(zhì),用勾股定理列出等式解之即可得出r的值.

詳解:(1)直線BE與⊙O相切理由如下

連接OE,在矩形ABCD,ADBC,∴∠ADB=DBC

OD=OE∴∠OED=ODE

又∵∠ABE=DBC,∴∠ABE=OED,

∵矩形ABDC,A=90°,∴∠ABE+∠AEB=90°,

∴∠OED+∠AEB=90°,∴∠BEO=90°,∴直線BE與⊙O相切;

2)連接EF,方法1

∵四邊形ABCD是矩形CD=2,∴∠A=C=90°,AB=CD=2

∵∠ABE=DBCsinCBD=

,

RtAEB中,∵CD=2,

tanCBD=tanABE,

由勾股定理求得

RtBEO,BEO=90°,EO2+EB2=OB2

設(shè)⊙O的半徑為r,r=,

方法2DF是⊙O的直徑,∴∠DEF=90°.

∵四邊形ABCD是矩形,∴∠A=C=90°,AB=CD=2

∵∠ABE=DBC,sinCBD=

設(shè),

span>∵CD=2,

tanCBD=tanABE,

EAD中點(diǎn).

DF為直徑FED=90°,EFAB,,∴⊙O的半徑為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,用火柴棒擺出一列正方形圖案,第①個(gè)圖案用了 4 根,第②個(gè)圖案用了 12 根,第③個(gè)圖案用了 24 按照這種方式擺下去,擺出第⑥個(gè)圖案用火柴棒的根數(shù)是(

A. 84 B. 81 C. 78 D. 76

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)為直線上一點(diǎn),過(guò)點(diǎn)作射線,使,將一直角三角板的直角頂點(diǎn)放在點(diǎn)處(),一邊在射線上,另一邊在直線的下方.

1)將圖1中的三角板繞點(diǎn)逆時(shí)針旋轉(zhuǎn)至圖2,使一邊的內(nèi)部,且恰好平分,求的度數(shù);

2)將圖1中的三角板繞點(diǎn)以每秒5的速度沿逆時(shí)針?lè)较蛐D(zhuǎn)一周,在旋轉(zhuǎn)的過(guò)程中,第秒時(shí),直線恰好平分銳角,求的值;

將圖1中的三角板繞點(diǎn)逆時(shí)針旋轉(zhuǎn)至圖3,使一邊的內(nèi)部,請(qǐng)?zhí)骄?/span>的值./span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在直角梯形ABCD中,∠BAD=90°,E是直線AB上一點(diǎn),過(guò)E作直線l∥BC,交直線CD于點(diǎn)F.將直線l向右平移,設(shè)平移距離BEt(t≥0),直角梯形ABCD被直線l掃過(guò)的面積(圖中陰影部分)為S,S關(guān)于t的函數(shù)圖象如圖所示,OM為線段,MN為拋物線的一部分,NQ為射線,N點(diǎn)橫坐標(biāo)為4.

信息讀取

(1)梯形上底的長(zhǎng)AB=   ;

(2)直角梯形ABCD的面積=   

圖象理解

(3)寫(xiě)出圖中射線NQ表示的實(shí)際意義;

(4)當(dāng)2<t<4時(shí),求S關(guān)于t的函數(shù)關(guān)系式;

問(wèn)題解決

(5)當(dāng)t為何值時(shí),直線l將直角梯形ABCD分成的兩部分面積之比為1:3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地發(fā)生地震,學(xué)校師生積極捐款,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人數(shù)比第一天捐款人數(shù)多50人,且兩天人均捐款數(shù)相等。

1)求第二天參加捐款的人數(shù)是多少?

2)第三天又有100人捐款,第三天人均捐款數(shù)與前兩天相同,求第三天捐款數(shù)額

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2016年泉州市初中體育中考中,隨意抽取某校5位同學(xué)一分鐘跳繩的次數(shù)分別為158,160,154,158,170則由這組數(shù)據(jù)得到的結(jié)論錯(cuò)誤的是( 。

A. 平均數(shù)為160 B. 中位數(shù)為158 C. 眾數(shù)為158 D. 方差為20.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解:

(閱讀材料)

在數(shù)軸上,通常用“兩數(shù)的差”來(lái)表示“數(shù)軸上兩點(diǎn)的距離”如圖1中三條線段的

長(zhǎng)度可表示為:,結(jié)論:數(shù)軸上任意兩點(diǎn)

表示的數(shù)為分別,則這兩個(gè)點(diǎn)間的距離為(即:用較大的數(shù)去減較小的數(shù))

(理解運(yùn)用)

根據(jù)閱讀材料完成下列各題:

1)如圖2, 分別表示數(shù),求線段的長(zhǎng);

2)若在直線上存在點(diǎn),使得,求點(diǎn)對(duì)應(yīng)的數(shù)值.

3兩點(diǎn)分別從同時(shí)出發(fā)以3個(gè)單位、2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右運(yùn)動(dòng),求當(dāng)點(diǎn)重合時(shí),它們運(yùn)動(dòng)的時(shí)間;

4)在(3)的條件下,求當(dāng)時(shí),它們運(yùn)動(dòng)的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線y=kx(k>0)與雙曲線交于A、B兩點(diǎn),且點(diǎn)A的縱坐標(biāo)為4,第一象限的雙曲線上有一點(diǎn),過(guò)點(diǎn)PPQ//y軸交直線AB于點(diǎn)Q

1)直接寫(xiě)出k的值及點(diǎn)B的坐標(biāo):

2)求線段PQ的長(zhǎng);

3)如果在直線y=kx上有一點(diǎn)M,且滿足BPM的面積等于12,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小軍自制的勻速直線運(yùn)動(dòng)遙控車模型甲、乙兩車同時(shí)分別從、出發(fā),沿直線軌道同時(shí)到達(dá)處,已知乙的速度是甲的速度的1.5倍,甲、乙兩遙控車與處的距離(米)與時(shí)間(分鐘)的函數(shù)關(guān)系如圖所示,則下列結(jié)論中:①的距離為120米;②乙的速度為60/分;③的值為;④若甲、乙兩遙控車的距離不少于10米時(shí),兩車信號(hào)不會(huì)產(chǎn)生互相干擾,則兩車信號(hào)不會(huì)產(chǎn)生互相干擾的的取值范圍是,其中正確的有( )個(gè)

A. 1B. 2C. 3D. 4

查看答案和解析>>

同步練習(xí)冊(cè)答案