(2000•黑龍江)當(dāng)m是什么整數(shù)時,關(guān)于x的一元二次方程mx2-4x+4=0與x2-4mx+4m2-4m-5=0的解都是整數(shù)?
【答案】分析:這兩個一元二次方程都有解,因而根與判別式△≥0,即可得到關(guān)于m不等式,從而求得m的范圍,再根據(jù)m是整數(shù),即可得到m的可能取到的幾個值,然后對每個值進行檢驗,是否符合使兩個一元二次方程的解都是整數(shù)即可確定m的值.
解答:,解:∵關(guān)于x的一元二次方程mx2-4x+4=0與x2-4mx+4m2-4m-5=0有解,
則m≠0,
∴△≥0
mx2-4x+4=0,
∴△=16-16m≥0,即m≤1;
x2-4mx+4m2-4m-5=0,
△=16m2-16m2+16m+20≥0,
∴4m+5≥0,m≥-;
∴-≤m≤1,而m是整數(shù),
所以m=1,m=0(舍去),m=-1(一個為x2-4x+4=0,另一個為x2+4x+3=0,沖突,故舍去),
當(dāng)m=1時,mx2-4x+4=0即x2-4x+4=0,方程的解是x1=x2=2;
x2-4mx+4m2-4m-5=0即x2-4x-5=0,方程的解是x1=5,x2=-1;
當(dāng)m=0時,mx2-4x+4=0時,方程是-4x+4=0不是一元二次方程,故舍去.
故m=1.
點評:解答此題要知道一元二次方程根的情況與判別式△的關(guān)系,首先根據(jù)根的判別式確定m的范圍是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2000•黑龍江)如圖,已知二次函數(shù)y=ax2+bx+c的圖象過(-1,0)和(0,-1)兩點,則a的取值范圍為
0<a<1
0<a<1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(02)(解析版) 題型:解答題

(2000•黑龍江)在直角坐標系中,點O1的坐標為(1,0),⊙O1與x軸交于原點O和點A,又點B、C的坐標分別為(-1,0)、(0,b),且0<b<3,直線l是過B、C點的直線.
(1)當(dāng)點C在線段OC上移動時,過點O1作O1D⊥直線l,交l于點D,若,試求a、b的函數(shù)關(guān)系式及a的取值范圍;
(2)當(dāng)D點是⊙O1的切點時,求直線l的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(01)(解析版) 題型:填空題

(2000•黑龍江)某種儲蓄的月利率是0.2%,存入100元本金后,則本息之和y(元)與所存月數(shù)x之間的函數(shù)關(guān)系為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年黑龍江省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2000•黑龍江)在直角坐標系中,點O1的坐標為(1,0),⊙O1與x軸交于原點O和點A,又點B、C的坐標分別為(-1,0)、(0,b),且0<b<3,直線l是過B、C點的直線.
(1)當(dāng)點C在線段OC上移動時,過點O1作O1D⊥直線l,交l于點D,若,試求a、b的函數(shù)關(guān)系式及a的取值范圍;
(2)當(dāng)D點是⊙O1的切點時,求直線l的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年黑龍江省中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2000•黑龍江)某種儲蓄的月利率是0.2%,存入100元本金后,則本息之和y(元)與所存月數(shù)x之間的函數(shù)關(guān)系為   

查看答案和解析>>

同步練習(xí)冊答案