【題目】我們知道,用字母表示的代數(shù)式是具有一般意義的,請仔細分析下列賦予3a實際意義的例子中不正確的是
A. 若葡萄的價格是3元千克,則3a表示買a千克葡萄的金額
B. 若a表示一個等邊三角形的邊長,則3a表示這個等邊三角形的周長
C. 將一個小木塊放在水平桌面上,若3表示小木塊與桌面的接觸面積,a表示桌面受到的壓強,則3a表示小木塊對桌面的壓力
D. 若3和a分別表示一個兩位數(shù)中的十位數(shù)字和個位數(shù)字,則3a表示這個兩位數(shù)
【答案】D
【解析】
根據(jù)總價=單價×數(shù)量可判斷A的對錯,根據(jù)等邊三角形的周長公式可判斷B的對錯,根據(jù)壓強公式可判斷C的對錯,根據(jù)多位數(shù)的表示法可判斷D的對錯.
A. 若葡萄的價格是3元/千克,則3a表示買a千克葡萄的金額,故正確;
B. 若a表示一個等邊三角形的邊長,則3a表示這個等邊三角形的周長,故正確;
C. 將一個小木塊放在水平桌面上,若3表示小木塊與桌面的接觸面積,a表示桌面受到的壓強,則3a表示小木塊對桌面的壓力,故正確;
D. 若3和a分別表示一個兩位數(shù)中的十位數(shù)字和個位數(shù)字,則30+a表示這個兩位數(shù),故不正確;
故選D.
科目:初中數(shù)學 來源: 題型:
【題目】下列說法不一定正確的是 ( )
A..若 x y ,則 x c=y cB.若 x y ,則 xc yc
C.若 x y ,則D.若,則 3x 2 y
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,甲和乙同時從學校放學,兩人以各自送度勻速步行回家,甲的家在學校的正西方向,乙的家在學校的正東方向,乙家離學校的距離比甲家離學校的距離遠3900米,甲準備一回家就開始做什業(yè),打開書包時發(fā)現(xiàn)錯拿了乙的練習冊.于是立即步去追乙,終于在途中追上了乙并交還了練習冊,然后再以先前的速度步行回家,(甲在家中耽擱和交還作業(yè)的時間忽略不計)結果甲比乙晚回到家中,如圖是兩人之間的距離y米與他們從學校出發(fā)的時間x分鐘的函數(shù)關系圖,則甲的家和乙的家相距_____米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點E、F分別在矩形ABCD的邊BC和CD上,如果△ABE、△ECF、△FDA的面積分別剛好為6、2、5,那么矩形ABCD的面積為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖直線y=2x+m與y=(n≠0)交于A,B兩點,且點A的坐標為(1,4).
(1)求此直線和雙曲線的表達式;
(2)過x軸上一點M作平行于y軸的直線1,分別與直線y=2x+m和雙曲線y=(n≠0)交于點P,Q,如果PQ=2QM,求點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知線段,,請你用量角器和刻度尺按下列要求畫圖:
(1)以為頂點,為一邊,在同側畫,與相交于點;
(2)取線段的中點,連接;
(3)用量角器得 ;
(4)用刻度尺測得線段 ,的長為 .(結果保留整數(shù)),圖中與線段相等的線段有 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知矩形ABCD的三個頂點B(1, 0)、C(3, 0)、D(3, 4).以A為頂點的拋物線y=ax2+bx+c過點C.動點P從點A出發(fā),以每秒個單位的速度沿線段AD向點D運動,運動時間為t秒.過點P作PE⊥x軸交拋物線于點M,交AC于點N.
(1)直接寫出點A的坐標,并求出拋物線的解析式;
(2)當t為何值時,△ACM的面積最大?最大值為多少?
(3)點Q從點C出發(fā),以每秒1個單位的速度沿線段CD向點D運動,當t為何值時,在線段PE上存在點H,使以C、Q、N、H為頂點的四邊形為菱形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,如果點A,點C為某個菱形的一組對角的頂點,且點A,C在直線y = x上,那么稱該菱形為點A,C的“極好菱形”. 下圖為點A,C的“極好菱形”的一個示意圖.
已知點M的坐標為(1,1),點P的坐標為(3,3).
(1)點E(2,1),F(1,3),G(4,0)中,能夠成為點M,P的“極好菱形”的頂點的是 ;
(2)如果四邊形MNPQ是點M,P的“極好菱形”.
①當點N的坐標為(3,1)時,求四邊形MNPQ的面積;
②當四邊形MNPQ的面積為8,且與直線y = x + b有公共點時,寫出b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店銷售每臺A型電腦的利潤為100元,銷售每臺B型電腦的利潤為150元,該商店計劃一次購進A,B兩種型號的電腦共100臺,設購進A型電腦x臺,這100臺電腦的銷售總利潤為y元.
(1)求y與x的函數(shù)關系式;
(2)該商店計劃一次購進A,B兩種型號的電腦共100臺,其中B型電腦的進貨量不超過A型電腦的2倍,那么商店購進A型、B型電腦各多少臺,才能使銷售總利潤最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com