【題目】
(1)計算:
(2)解不等式組:

【答案】
(1)解:4cos45°﹣ +(π+ 0+(﹣1)2

=4× ﹣2 +1+1

=2 ﹣2 +2

=2


(2)解: ,

解不等式①得,x<2,

解不等式②得,x≥1,

所以不等式組的解集是1≤x<2


【解析】(1)根據45°角的余弦等于 ,二次根式的化簡,任何非0數(shù)的0次冪等于1,有理數(shù)的乘方進行計算即可得解;(2)先求出兩個不等式的解集,再確定這兩個解集的公共部分即可.
【考點精析】掌握零指數(shù)冪法則和一元一次不等式組的解法是解答本題的根本,需要知道零次冪和負整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));解法:①分別求出這個不等式組中各個不等式的解集;②利用數(shù)軸表示出各個不等式的解集;③找出公共部分;④用不等式表示出這個不等式組的解集.如果這些不等式的解集的沒有公共部分,則這個不等式組無解 ( 此時也稱這個不等式組的解集為空集 ).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】方程4x2x+8)的解是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,有若干個橫坐標分別為整數(shù)的點,其順序按HUI圖中“→”方向排列,如(1,0),(20),(2,1),(11),(12),(2,2)…根據這個規(guī)律,第2018個點的坐標為___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的方程x2﹣(m+2)x+(2m﹣1)=0.
(1)求證:方程恒有兩個不相等的實數(shù)根;
(2)若此方程的一個根是1,請求出方程的另一個根,并求以此兩根為邊長的直角三角形的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖在每個小正方形邊長為1的方格紙中,△ABC的頂點都在方格紙格點上.

(1)△ABC的面積為______;

(2)將△ABC經過平移后得到△A′B′C′,圖中標出了點B的對應點B′,補全△A′B′C′;

(3)若連接AA′,BB′,則這兩條線段之間的關系是______;

(4)在圖中畫出△ABC的高CD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有七張正面分別標有數(shù)字﹣3,﹣2,﹣1,0,1,2,3的卡片,它們除數(shù)字不同外其余全部相同.現(xiàn)將它們背面朝上,洗勻后從中隨機抽取一張,記卡片上的數(shù)字為a,則使關于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有兩個不相等的實數(shù)根,且以x為自變量的二次函數(shù)y=x2﹣(a2+1)x﹣a+2的圖象不經過點(1,O)的概率是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長方形紙片ABCD中,AB=8cm,AD=6cm,按下列步驟進行裁剪和拼圖:
第一步:如圖①,在線段AD上任意取一點E,沿EB,EC剪下一個三角形紙片EBC(余下部分不再使用);
第二步:如圖②,沿三角形EBC的中位線GH將紙片剪成兩部分,并在線段GH上任意取一點M,線段BC上任意取一點N,沿MN將梯形紙片GBCH剪成兩部分;
第三步:如圖③,將MN左側紙片繞G點按順時針方向旋轉180°,使線段GB與GE重合,將MN右側紙片繞H點按逆時針方向旋轉180°,使線段HC與HE重合,拼成一個與三角形紙片EBC面積相等的四邊形紙片.
(注:裁剪和拼圖過程均無縫且不重疊)
則拼成的這個四邊形紙片的周長的最小值為cm,最大值為cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知平面直角坐標系中有一點.

(1)點My軸的距離為1時,M的坐標?

(2)點MN//x軸時,M的坐標?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工廠現(xiàn)有甲種原料360千克,乙種原料290千克,計劃利用這兩種原料生產A、B兩種產品50件.生產一件A產品需要甲種原料9千克,乙種原料3千克,可獲利潤700元;生產一件B產品,需要甲種原料4千克,乙種原料10千克,可獲利潤1200元.

(1)設生產xA種產品,寫出其題意x應滿足的不等式組;

(2)由題意有哪幾種按要求安排A、B兩種產品的生產件數(shù)的生產方案?請您幫助設計出來.

查看答案和解析>>

同步練習冊答案