【題目】如果一個(gè)平行四邊形的內(nèi)角平分線與邊相交,并且這條邊被分成 3、5 兩段,那么這個(gè)平行四邊形的周長為 ______________.
【答案】26 或 22
【解析】
根據(jù)題意可證明AE=AB,由于一邊被分成了3、5兩段,可分兩種情況討論,一是AE=5,DE=3,二是AE=3,DE=5,再計(jì)算平行四邊形的周長即可.
解:設(shè)平行四邊形ABCD,BE平分∠ABC∠AD于點(diǎn)E,
∵四邊形ABCD是平行四邊形,
∴AD∥BC
∴∠AEB=∠EBC,
又∵BE平分∠ABC,
∴∠ABE=∠EBC
∴∠AEB=∠ABE
∴AE=AB
根據(jù)題意,可分如下兩種情況,
①當(dāng)AE=5,DE=3時(shí),如圖1所示,
則AD=3+5=8,AB=AE=5
∴平行四邊形的周長為:2(8+5)=26,
②當(dāng)AE=3,DE=5時(shí),
則AB=AE=3,AD=3+5=8,
∴平行四邊形的周長為:2(8+3)=22
故答案為:22或26.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】郵政部門規(guī)定:信函重100克以內(nèi)(包括100克)每20克貼郵票0.8元,不足20克重以20克計(jì)算;超過100克,先貼郵票4元,超過100克部分每100克加貼郵票2元,不足100克重以100克計(jì)算.八(9)班有11位同學(xué)參加項(xiàng)目化學(xué)習(xí)知識(shí)競賽,若每份答卷重12克,每個(gè)信封重4克,將這11份答卷分裝在兩個(gè)信封中寄出,所貼郵票的總金額最少是_________元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格中,每個(gè)小方格的邊長都為1,△各頂點(diǎn)都在格點(diǎn)上.若點(diǎn)的坐標(biāo)為(0,3),請按要求解答下列問題:
(1)在圖中建立符合條件的平面直角坐標(biāo)系;
(2)根據(jù)所建立的坐標(biāo)系,寫出點(diǎn)和點(diǎn)的坐標(biāo);
(3)畫出△關(guān)于軸的對稱圖形△.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是(0,3),點(diǎn)B的坐標(biāo)是(﹣4,0),將△AOB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△AEF,點(diǎn)O、B的對應(yīng)點(diǎn)分別是點(diǎn)E、F.
(1)請?jiān)趫D中畫出△AEF.
(2)請?jiān)趚軸上找一個(gè)點(diǎn)P,使PA+PE的值最小,并直接寫出P點(diǎn)的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:點(diǎn)O到△ABC的兩邊AB,AC所在直線的距離相等,且OB=OC.
(1)如圖1,若點(diǎn)O在邊BC上,OE⊥AB,OF⊥AC,垂足分別為E,F.求證:AB=AC;
(2)如圖,若點(diǎn)O在△ABC的內(nèi)部,求證:AB=AC;
(3)若點(diǎn)O在△ABC的外部,AB=AC成立嗎?請畫出圖表示.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD 由 6 個(gè)腰長為 2,且全等的等腰梯形鑲嵌而成,則 AB 的長為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=kx+b(k≠0)與雙曲線y=相交于點(diǎn)A(m,6)和點(diǎn)B(﹣3,n),直線AB與y軸交于點(diǎn)C.
(1)求直線AB的表達(dá)式;
(2)求AC:CB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AB∥DE,AC∥DF,AC=DF下列條件中,不能判斷△ABC≌△DEF的是( 。
A. AB=DE B. ∠B=∠E C. EF=BC D. EF∥BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+mx+n與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對稱軸交x軸于點(diǎn)D,已知A(﹣1,0),C(0,2).
(1)求拋物線的表達(dá)式;
(2)在拋物線的對稱軸上是否存在點(diǎn)P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點(diǎn)的坐標(biāo);如果不存在,請說明理由;
(3)點(diǎn)E時(shí)線段BC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)E作x軸的垂線與拋物線相交于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時(shí)E點(diǎn)的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com