已知:如圖,在Rt△ABC中,∠ABC=90°,以AB為直徑的⊙O交AC于點(diǎn)D,E是BC的中點(diǎn),連結(jié)DE.
(1)求證:DE與⊙O相切;
(2)連結(jié)OE,若cos∠BAD=,BE=,求OE的長.

【答案】分析:(1)連接OD,BD,利用切線的性質(zhì)得出∠ABC=∠2+∠4=90°,進(jìn)而得出∠ODE=∠1+∠3=90°,即可得出答案;
(2)根據(jù)相似三角形的判定與性質(zhì)得出△ABC∽△ADB,以及AC的長,進(jìn)而得出答案.
解答:(1)證明:如圖1所示,連接OD,BD
∵AB是⊙O的直徑,∴∠ADB=∠BDC=90°.
在Rt△BDC中
∵E是BC的中點(diǎn),∴DE=BC;
∴DE=BE;∴∠1=∠2.
∵OD=OB,∴∠3=∠4;
∵∠ABC=∠2+∠4=90°
∴∠ODE=∠1+∠3=90°,
即OD⊥DE,
∴DE是⊙O的切線;
            
(2)解:∵E是BC的中點(diǎn),O是AB中點(diǎn),
∴OE∥AC,
∴∠BAD=∠BOE,
∴cos∠BAD=∠BOE=
∵BE=,
∴OE=
點(diǎn)評:此題主要考查了切線的判定與性質(zhì)以及相似三角形的判定與性質(zhì)和三角形中位線定理等知識,根據(jù)已知得出△ABC∽△ADB是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在Rt△ABC中,∠C=90°,過點(diǎn)B作BD∥AC,且BD=2AC,連接AD.試判斷△ABD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1997•陜西)已知,如圖,在Rt△ABC中,∠C=90°,以AC為直徑的⊙O交斜邊AB于E,OD∥AB.求證:①ED是⊙O的切線;②2DE2=BE•OD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•豐臺區(qū)一模)已知:如圖,在Rt△ABC中,∠ABC=90°,以AB為直徑的⊙O交AC于點(diǎn)D,E是BC的中點(diǎn),連結(jié)DE.
(1)求證:DE與⊙O相切;
(2)連結(jié)OE,若cos∠BAD=
3
5
,BE=
14
3
,求OE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在Rt△ABC中,∠C=90°,BC=4,AC=8,點(diǎn)D在斜邊AB上,分別作DE⊥AC,DF⊥BC,垂足分別為E、F,得四邊形DECF,設(shè)DE=x,DF=y.
(1)求出cosB的值;
(2)用含y的代數(shù)式表示AE;
(3)求y與x之間的函數(shù)關(guān)系式,并求出x的取值范圍;
(4)設(shè)四邊形DECF的面積為S,求出S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖,在Rt△ABC中,∠C=90°,AC=15,BC=20,求斜邊AB上的高CD.

查看答案和解析>>

同步練習(xí)冊答案