【題目】如圖,在RtABC中,∠ACB90°,CDABD,ACBD4

1)求證:△ACD∽△ABC;

2)求△ABC的面積.

【答案】1)詳見(jiàn)解析;(25

【解析】

1)根據(jù)余角的性質(zhì)得到∠ACD=∠B,根據(jù)相似三角形的判定定理即可得到結(jié)論△ACD∽△ABC;

2)根據(jù)相似三角形的性質(zhì)得到AB5,根據(jù)勾股定理得到BC2,由三角形的面積公式即可得到結(jié)論.

1)證明:∵∠ACB90°,CDAB,

∵∠ACB=∠ADC90°,

∴∠A+B=∠A+ACD90°,

∴∠ACD=∠B

∴△ACD∽△ABC;

2)解:∵△ACD∽△ABC

,

,

AB5(負(fù)值舍去),

BC2

∴△ABC的面積=ACBC5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),A1B1A2B2是水面上相鄰的兩條賽道(看成兩條互相平行的線段).甲是一名游泳運(yùn)動(dòng)健將,乙是一名游泳愛(ài)好者,甲在賽道A1B1上從A1處出發(fā),到達(dá)B1后,以同樣的速度返回A1處,然后重復(fù)上述過(guò)程;乙在賽道A2B2上以1.5m/s的速度從B2處出發(fā),到達(dá)A2后以相同的速度回到B2處,然后重復(fù)上述過(guò)程(不考慮每次折返時(shí)的減速和轉(zhuǎn)向時(shí)間).若甲、乙兩人同時(shí)出發(fā),設(shè)離開(kāi)池邊B1B2的距離為ym),運(yùn)動(dòng)時(shí)間為ts),甲游動(dòng)時(shí),ym)與ts)的函數(shù)圖象如圖(2)所示.

1)賽道的長(zhǎng)度是  m,甲的速度是  m/s;當(dāng)t=   s時(shí),甲、乙兩人第一次相遇,當(dāng)t=   s時(shí),甲、乙兩人第二次相遇?

2)第三次相遇時(shí),兩人距池邊B1B2多少米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),探究函數(shù)圖象和性質(zhì)過(guò)程如下:

1)下表是yx的幾組值,則解析式中的m   ,表格中的n   ;

x

5

4

3

2

1

0

1

2

3

4

5

6

y

1

3

4

3

n

0

2)在平面直角坐標(biāo)系中描出表格中各點(diǎn),并畫(huà)出函數(shù)圖象:

3)若Ax1,y1)、Bx2y2)、Cx3,y3)為函數(shù)圖象上的三個(gè)點(diǎn),其中x2+x34且﹣1x10x22x34,則y1y2、y3之間的大小關(guān)系是   

4)若直線yk+1與該函數(shù)圖象有且僅有一個(gè)交點(diǎn),則k的取值范圍為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2017湖北省鄂州市)小明想要測(cè)量學(xué)校食堂和食堂正前方一棵樹(shù)的高度,他從食堂樓底M處出發(fā),向前走3米到達(dá)A處,測(cè)得樹(shù)頂端E的仰角為30°,他又繼續(xù)走下臺(tái)階到達(dá)C處,測(cè)得樹(shù)的頂端E的仰角是60°,再繼續(xù)向前走到大樹(shù)底D處,測(cè)得食堂樓頂N的仰角為45°.已知A點(diǎn)離地面的高度AB=2米,∠BCA=30°,且B、C、D三點(diǎn)在同一直線上.

(1)求樹(shù)DE的高度;

(2)求食堂MN的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與探究:

操作發(fā)現(xiàn):如圖1,在中,,以點(diǎn)為中心,把順時(shí)針旋轉(zhuǎn),得到;再以點(diǎn)為中心,把逆時(shí)針旋轉(zhuǎn),得到.連接.的位置關(guān)系為平行;

探究證明:如圖2,當(dāng)是銳角三角形,時(shí),將按照(1)中的方式,以點(diǎn)為中心,把順時(shí)針旋轉(zhuǎn),得到;再以點(diǎn)為中心,把逆時(shí)針旋轉(zhuǎn),得到.連接,

①探究的位置關(guān)系,寫(xiě)出你的探究結(jié)論,并加以證明;

②探究的位置關(guān)系,寫(xiě)出你的探究結(jié)論,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)yax2﹣(2a+1x+ca0)的圖象經(jīng)過(guò)坐標(biāo)原點(diǎn)O,一次函數(shù)yx4x軸、y軸分別交于點(diǎn)A、B

1c   ,點(diǎn)A的坐標(biāo)為   

2)若二次函數(shù)ya2﹣(2a+1x+c的圖象經(jīng)過(guò)點(diǎn)A,求a的值.

3)若二次函數(shù)ya2﹣(2a+1x+c的圖象與△AOB只有一個(gè)公共點(diǎn),直接寫(xiě)出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為弘揚(yáng)中華傳統(tǒng)文化,黔南州近期舉辦了中小學(xué)生國(guó)學(xué)經(jīng)典大賽.比賽項(xiàng)目為:A.唐詩(shī);B.宋詞;C.論語(yǔ);D.三字經(jīng).比賽形式分單人組雙人組”.

(1)小麗參加單人組,她從中隨機(jī)抽取一個(gè)比賽項(xiàng)目,恰好抽中三字經(jīng)的概率是多少?

(2)小紅和小明組成一個(gè)小組參加雙人組比賽,比賽規(guī)則是:同一小組的兩名隊(duì)員的比賽項(xiàng)目不能相同,且每人只能隨機(jī)抽取一次,則恰好小紅抽中唐詩(shī)且小明抽中宋詞的概率是多少?請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法進(jìn)行說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四邊形ABCD中,點(diǎn)EF分別是AB、AD邊上一點(diǎn),∠DFC2FCE

1)如圖1,若四邊形ABCD是正方形,∠DFC60°BE4,則AF   

2)如圖2,若四邊形ABCD是菱形,∠A120°,∠DFC90°BE4,求的值.

3)如圖3,若四邊形ABCD是矩形,點(diǎn)EAB的中點(diǎn),CE12,CF13,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為弘揚(yáng)傳統(tǒng)文化,某校開(kāi)展了傳承經(jīng)典文化,閱讀經(jīng)典名著活動(dòng).為了解七、八年級(jí)學(xué)生(七、八年級(jí)各有600名學(xué)生)的閱讀效果,該校舉行了經(jīng)典文化知識(shí)競(jìng)賽.現(xiàn)從兩個(gè)年級(jí)各隨機(jī)抽取20名學(xué)生的競(jìng)賽成績(jī)(百分制)進(jìn)行分析,過(guò)程如下:

收集數(shù)據(jù):

七年級(jí):79,85,738075,76,87,70,7594,75,79,8171,75,8086,5983,77

八年級(jí):9274,87,8272,81,94,8377,83,80,81,7181,72,77,82,8070,41

整理數(shù)據(jù):

七年級(jí)

0

1

0

a

7

1

八年級(jí)

1

0

0

7

b

2

分析數(shù)據(jù):

平均數(shù)

眾數(shù)

中位數(shù)

七年級(jí)

78

75

八年級(jí)

78

80.5

應(yīng)用數(shù)據(jù):

(1)由上表填空:a= b= ,c= ,d=

(2)估計(jì)該校七、八兩個(gè)年級(jí)學(xué)生在本次競(jìng)賽中成績(jī)?cè)?/span>90分以上的共有多少人?

(3)你認(rèn)為哪個(gè)年級(jí)的學(xué)生對(duì)經(jīng)典文化知識(shí)掌握的總體水平較好,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案