【題目】方格紙中每個(gè)小方格都是邊長為1的正方形,我們把以格點(diǎn)連線為邊的多邊形稱為格點(diǎn)多邊形

在圖1中畫一個(gè)格點(diǎn)正方形,使得該正方形的面積為13

在圖2中畫出格點(diǎn)D,使四邊形ABCD為軸對(duì)稱圖形;

在圖3中畫出格點(diǎn)G、H,使得點(diǎn)E、F、G、H為頂點(diǎn)的四邊形是軸對(duì)稱圖形,有且只有一個(gè)內(nèi)角為直角.(畫出一個(gè)即可)

【答案】(1)見解析;(2)見解析;(3)見解析

【解析】

1)要使得該正方形的面積為13,則邊長為,即構(gòu)造一個(gè)斜邊長為的直角三角形,然后以斜邊為一邊作出正方形即可;

2)以AC為對(duì)稱軸,作出點(diǎn)B的對(duì)稱點(diǎn)D點(diǎn),則D點(diǎn)為所求;

3)在F點(diǎn)的下方,作FC=FE,并且,然后作EC的垂直平分線,在垂直平分線上任意取一個(gè)格點(diǎn)H即可.

如圖示,要使得該正方形的面積為13,則邊長為,即構(gòu)造一個(gè)斜邊長為的直角三角形,然后以斜邊為一邊作正方形(答案不唯一);

如圖,以AC為對(duì)稱軸,作點(diǎn)B的對(duì)稱點(diǎn)D點(diǎn),則D點(diǎn)為所求(答案不唯一);

如圖,在F點(diǎn)的下方,作FC=FE,并且,然后作EC的垂直平分線,在垂直平分線上任意取一個(gè)格點(diǎn)H,則GH為所求(答案不唯一).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)m是不小于﹣1的實(shí)數(shù),關(guān)于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有兩個(gè)不相等的實(shí)數(shù)根x1、x2,

(1)若x12+x22=6,求m值;

(2)令T=,求T的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠車間共有10名工人,調(diào)查每個(gè)工人的日均生產(chǎn)能力,獲得數(shù)據(jù)制成如下統(tǒng)計(jì)圖.

(1)求這10名工人的日均生產(chǎn)件數(shù)的平均數(shù)、眾數(shù)、中位數(shù);

(2)若要使占60%的工人都能完成任務(wù),應(yīng)選什么統(tǒng)計(jì)量(平均數(shù)、中位數(shù)、眾數(shù))做日生產(chǎn)件數(shù)的定額?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在中,,垂足為點(diǎn)H,若,,則______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】每年的6月5日為世界環(huán)保日,為了提倡低碳環(huán)保,某公司決定購買10臺(tái)節(jié)省能源的新設(shè)備,現(xiàn)有甲、乙兩種型號(hào)的設(shè)備可供選購. 經(jīng)調(diào)查:購買3臺(tái)甲型設(shè)備比購買2臺(tái)乙型設(shè)備多花16萬元,購買2臺(tái)甲型設(shè)備比購買3臺(tái)乙型設(shè)備少花6萬元.

(1)求甲、乙兩種型號(hào)設(shè)備的價(jià)格;

(2)該公司經(jīng)預(yù)算決定購買節(jié)省能源的新設(shè)備的資金不超過110萬元,你認(rèn)為該公司有哪幾種購買方案;

(3)在(2)的條件下,已知甲型設(shè)備的產(chǎn)量為240噸/月,乙型設(shè)備的產(chǎn)量為180噸/月.若每月要求總產(chǎn)量不低于2040噸,為了節(jié)約資金,請(qǐng)你為該公司設(shè)計(jì)一種最省錢的購買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知實(shí)數(shù)a、bc滿足ababc,有下列結(jié)論:

c≠0,則;a3,則bc9;

abc,則abc0a、b、c中只有兩個(gè)數(shù)相等,則abc8

其中正確的是 (把所有正確結(jié)論的序號(hào)都選上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,五邊形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,E=115°,則∠BAE的度數(shù)為何?( 。

A. 115 B. 120 C. 125 D. 130

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC和DCB中,∠BAC=∠CDB=90°,AB=DC,AC與BD交于點(diǎn)O.

(1)求證:△ABC≌△DCB.

(2)當(dāng)DBC=30°,BC=6時(shí),求BO的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,點(diǎn)DBC邊上的一點(diǎn),∠B=50°,∠BAD=30°,將ABD沿AD折疊得到AEDAEBC交于點(diǎn)F

1)填空:∠AFC=______度;

2)求∠EDF的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案