(2013•綏化)如圖,直線MN與x軸,y軸分別相交于A,C兩點(diǎn),分別過(guò)A,C兩點(diǎn)作x軸,y軸的垂線相交于B點(diǎn),且OA,OC(OA>OC)的長(zhǎng)分別是一元二次方程x2-14x+48=0的兩個(gè)實(shí)數(shù)根.
(1)求C點(diǎn)坐標(biāo);
(2)求直線MN的解析式;
(3)在直線MN上存在點(diǎn)P,使以點(diǎn)P,B,C三點(diǎn)為頂點(diǎn)的三角形是等腰三角形,請(qǐng)直接寫(xiě)出P點(diǎn)的坐標(biāo).
分析:(1)通過(guò)解方程x2-14x+48=0可以求得OC=6,OA=8.則C(0,6);
(2)設(shè)直線MN的解析式是y=kx+b(k≠0).把點(diǎn)A、C的坐標(biāo)分別代入解析式,列出關(guān)于系數(shù)k、b的方程組,通過(guò)解方程組即可求得它們的值;
(3)需要分類(lèi)討論:PB為腰,PB為底兩種情況下的點(diǎn)P的坐標(biāo).根據(jù)等腰三角形的性質(zhì)、兩點(diǎn)間的距離公式以及一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征進(jìn)行解答.
解答:解:(1)解方程x2-14x+48=0得
x1=6,x2=8.
∵OA,OC(OA>OC)的長(zhǎng)分別是一元二次方程x2-14x+48=0的兩個(gè)實(shí)數(shù)根,
∴OC=6,OA=8.
∴C(0,6);

(2)設(shè)直線MN的解析式是y=kx+b(k≠0).
由(1)知,OA=8,則A(8,0).
∵點(diǎn)A、C都在直線MN上,
8k+b=0
b=6
,
解得,
k=-
3
4
b=6
,
∴直線MN的解析式為y=-
3
4
x+6;

(3)∵A(8,0),C(0,6),
∴根據(jù)題意知B(8,6).
∵點(diǎn)P在直線MNy=-
3
4
x+6上,
∴設(shè)P(a,-
3
4
a+6)
當(dāng)以點(diǎn)P,B,C三點(diǎn)為頂點(diǎn)的三角形是等腰三角形時(shí),需要分類(lèi)討論:
①當(dāng)PC=PB時(shí),點(diǎn)P是線段BC的中垂線與直線MN的交點(diǎn),則P1(4,3);
②當(dāng)PC=BC時(shí),a2+(-
3
4
a+6-6)2=64,
解得,a=±
32
5
,則P2(-
32
5
,
54
5
),P3
32
5
,
6
5
);
③當(dāng)PB=BC時(shí),(a-8)2+(-
3
4
a+6-6)2=64,
解得,a=
256
25
,則-
3
4
a+6=-
42
25
,∴P4
256
25
,-
42
25
).
綜上所述,符合條件的點(diǎn)P有:P1(4,3),P2(-
32
5
,
54
5
)P3
32
5
6
5
),P4
256
25
,-
42
25
).
點(diǎn)評(píng):本題考查了一次函數(shù)綜合題.其中涉及到的知識(shí)點(diǎn)有:待定系數(shù)法求一次函數(shù)解析式,一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,等腰三角形的性質(zhì).解答(3)題時(shí),要分類(lèi)討論,防止漏解.另外,解答(3)題時(shí),還利用了“數(shù)形結(jié)合”的數(shù)學(xué)思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•綏化)如圖,A,B,C三點(diǎn)在同一條直線上,∠A=∠C=90°,AB=CD,請(qǐng)?zhí)砑右粋(gè)適當(dāng)?shù)臈l件
AE=CB
AE=CB
,使得△EAB≌△BCD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•綏化)如圖所示,以O(shè)為端點(diǎn)畫(huà)六條射線后OA,OB,OC,OD,OE,O后F,再?gòu)纳渚OA上某點(diǎn)開(kāi)始按逆時(shí)針?lè)较蛞来卧谏渚上描點(diǎn)并連線,若將各條射線所描的點(diǎn)依次記為1,2,3,4,5,6,7,8…后,那么所描的第2013個(gè)點(diǎn)在射線
OC
OC
上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•綏化)如圖,在平行四邊形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E,F(xiàn)分別是邊AD,AB的中點(diǎn),EF交AC于點(diǎn)H,則
AH
HC
的值為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•綏化)如圖,點(diǎn)A,B,C,D為⊙O上的四個(gè)點(diǎn),AC平分∠BAD,AC交BD于點(diǎn)E,CE=4,CD=6,則AE的長(zhǎng)為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案