如圖,已知:C是以AB為直徑的半圓O上一點(diǎn),CH⊥AB于點(diǎn)H,直線AC與過B點(diǎn)的切線相交于點(diǎn)D,E為CH中點(diǎn),連接AE并延長交BD于點(diǎn)F,直線CF交直線AB于點(diǎn)G.
(1)求證:①點(diǎn)F是BD中點(diǎn);②CG是⊙O的切線;
(2)若FB=FE=2,求⊙O的半徑.
(1)證明:①∵CH⊥AB,DB⊥AB,
∴△AEH△AFB,△ACE△ADF;
EH
BF
=
AE
AF
=
CE
FD

∵HE=EC,
∴BF=FD,即點(diǎn)F是BD中點(diǎn).

②證明:連接CB、OC;
∵AB是直徑,
∴∠ACB=90°.
∵F是BD中點(diǎn),
∴∠BCF=∠CBF=90°-∠CBA=∠CAB=∠ACO.
∴∠OCF=90°,
又∵OC為圓O半徑,
∴CG是⊙O的切線.

(2)∵FC=FB=FE,
∴∠FCE=∠FEC.
∵∠FEC=∠AEH,
∴∠FCE=∠AEH,
∵∠G+∠FCE=90°,∠FAB+∠AEH=90°,
∴∠G=∠FAB,
∴FA=FG,
∵FB⊥AG,
∴AB=BG.
∵(2+FG)2=BG×AG=2BG2
∵BG2=FG2-BF2
由①、②得:FG2-4FG-12=0
∴FG1=6,F(xiàn)G2=-2(舍去)
∴AB=BG=4
2

∴⊙O半徑為2
2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知Rt△ABC的斜邊AB=8cm,AC=4cm.
(1)以點(diǎn)C為圓心作圓,當(dāng)半徑為多長時(shí),直線AB與⊙C相切?為什么?
(2)以點(diǎn)C為圓心,分別以2cm和4cm為半徑作兩個(gè)圓,這兩個(gè)圓與直線AB分別有怎樣的位置關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,以AB為直徑的半圓O交AC于點(diǎn)D,且點(diǎn)D為AC的中點(diǎn),DE⊥BC于點(diǎn)E,AE交半圓O于點(diǎn)F,BF的延長線交DE于點(diǎn)G.
(1)求證:DE為半圓O的切線;
(2)若GE=1,BF=
3
2
,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系內(nèi),半徑為t的⊙D與x軸交于點(diǎn)A(1,0)、B(5,0),點(diǎn)D在第一象限,點(diǎn)C的坐標(biāo)為(0,-2),過B點(diǎn)作BE⊥CD于點(diǎn)E.
(1)當(dāng)t為何值時(shí),⊙D與y軸相切?并求出圓心D的坐標(biāo);
(2)直接寫出,當(dāng)t為何值時(shí),⊙D與y軸相交、相離;
(3)直線CE與x軸交于點(diǎn)F,當(dāng)△OCF與△BEF全等時(shí),求點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,某機(jī)械傳動(dòng)裝置在靜止?fàn)顟B(tài)時(shí),連桿PA與點(diǎn)A運(yùn)動(dòng)所形成的⊙O交于B點(diǎn),現(xiàn)測(cè)得PB=4cm,AB=5cm,⊙O的半徑R=4.5cm,此時(shí)P點(diǎn)到圓心O的距離是______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,兩同心圓的圓心為O,大圓的弦AB、AC分別切小圓于D、E兩點(diǎn),小圓的劣弧
DE
的度數(shù)為110゜,則大圓的劣弧
BC
的度數(shù)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點(diǎn)D在⊙O的直徑AB的延長線上,點(diǎn)C在⊙O上,AC=CD,∠D=30°.
(l)求證:CD是⊙O的切線;
(2)若CD=3
3
,求扇形0AC的面積.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,弦DE垂直平分半徑OA,C為垂足,DE=3,連接BD,過點(diǎn)E作EMBD,交BA的延長線于點(diǎn)M.
(1)求⊙O的半徑;
(2)求證:EM是⊙O的切線;
(3)若弦DF與直徑AB相交于點(diǎn)P,當(dāng)∠APD=45°時(shí),求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AO是△ABC的中線,⊙O與AB邊相切于點(diǎn)D.
(1)要使⊙O與AC邊也相切,應(yīng)增加條件______;(任寫一個(gè))
(2)說明你(1)中添加的理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案