如圖,已知PA、PB是⊙O的切線,A、B為切點,AC是⊙O的直徑,∠P=40°,則∠BAC的大小是( 。
A.70°B.40°C.50°D.20°

連接BC,OB,
∵PA、PB是⊙O的切線,A、B為切點,
∴∠OAP=∠OBP=90°;
而∠P=40°(已知),
∴∠AOB=180°-∠P=140°,
∴∠BOC=40°,
∴∠BAC=
1
2
∠BOC=20°(同弧所對的圓周角是所對的圓心角的一半),
故選D.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖:PA是⊙O的切線,A為切點,PBC是過圓心的割線,PA=10,PB=5,則tan∠PAB的值為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于點D,過點D作DE⊥AC于點E.求證:DE是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,P是⊙O外一點,PA是⊙O的切線,A是切點,B是⊙O上一點,且PA=PB,連接AO、BO、AB,并延長BO與切線PA相交于點Q.
(1)求證:PB是⊙O的切線;
(2)求證:AQ•PQ=OQ•BQ;
(3)設∠AOQ=α,若cosα=
4
5
,OQ=15,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,△ABC內(nèi)接于⊙O,AB為⊙O的直徑,過點C作⊙O的切線CM,D是CM上一點,連接BD,且∠DBC=∠CAB.
(1)求證:BD是⊙O的切線;
(2)連接OD,若∠ABC=30°,OA=4,求OD的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,PA切⊙O于點A,PBC是經(jīng)過O點的割線,若∠P=30°,則弧AB的度數(shù)是( 。
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:射線OF交圓O于點B,半徑OA⊥OB,P是射線OF上的一個動點,(不與O,B重合),直線AP交圓O于D,過D作圓O的切線交射線OF于E,
(1)圖a是點P在圓內(nèi)移動時符合已知條件的圖形,請你在圖b中畫出點P在圓外移動時符合已知條件的圖形;
(2)觀察圖形,點P在移動過程中,△DPE的邊,角或形狀存在某些規(guī)律,請你通過觀察,測量,比較,寫出一條與△DPE的邊,角或形狀有關(guān)的規(guī)律;
(3)在點P移動的過程中,設∠DEP的度數(shù)為x,∠OAP的度數(shù)為y,求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在邊長為3cm的正方形中,⊙P與⊙Q相外切,且⊙P分別與DA、DC邊相切,⊙Q分別與BA、BC邊相切,則圓心距PQ為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知兩圓的半徑分別為2cm和4cm,圓心距為3cm,則這兩圓的位置關(guān)系是______.

查看答案和解析>>

同步練習冊答案