如圖,菱形、矩形與正方形的形狀有差異,我們將菱形、矩形與正方形的接近程度稱為“接近度”.在研究“接近度”時(shí),應(yīng)保證相似圖形的“接近度”相等.

(1)設(shè)菱形相鄰兩個(gè)內(nèi)角的度數(shù)分別為m°和n°,將菱形的“接近度”定義為|m﹣n|,于是|m﹣n|越小,菱形越接近于正方形.

①若菱形的一個(gè)內(nèi)角為70°,則該菱形的“接近度”等于 _________ ;

②當(dāng)菱形的“接近度”等于 _________ 時(shí),菱形是正方形.

(2)設(shè)矩形相鄰兩條邊長(zhǎng)分別是a和b(a≤b),將矩形的“接近度”定義為|a﹣b|,于是|a﹣b|越小,矩形越接近于正方形.

你認(rèn)為這種說(shuō)法是否合理?若不合理,給出矩形的“接近度”一個(gè)合理定義.

 

【答案】

(1)①40  ②0 (2)不合理.理由見(jiàn)解析

【解析】

試題分析:(1)根據(jù)相似圖形的定義知,相似圖形的形狀相同,但大小不一定相同,相似圖形的“接近度”相等.所以若菱形的一個(gè)內(nèi)角為70°,則該菱形的“接近度”等于|m﹣n|;當(dāng)菱形的“接近度”等于0時(shí),菱形是正方形;

(2)不合理,舉例進(jìn)行說(shuō)明.

解:(1)①∵內(nèi)角為70°,

∴與它相鄰內(nèi)角的度數(shù)為110°.

∴菱形的“接近度”=|m﹣n|=|110﹣70|=40.

②當(dāng)菱形的“接近度”等于0時(shí),菱形是正方形.

(2)不合理.

例如,對(duì)兩個(gè)相似而不全等的矩形來(lái)說(shuō),它們接近正方形的程度是相同的,但|a﹣b|卻不相等.

合理定義方法不唯一.

如定義為,

越小,矩形越接近于正方形;

越大,矩形與正方形的形狀差異越大;

當(dāng)時(shí),矩形就變成了正方形.

考點(diǎn):相似圖形;菱形的性質(zhì);正方形的性質(zhì).

點(diǎn)評(píng):正確理解“接近度”的意思,矩形的“接近度”|a﹣b|越小,矩形越接近于正方形.這是解決問(wèn)題的關(guān)鍵.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,菱形、矩形與正方形的形狀有差異,我們將菱形、矩形與正方形的接近程度稱為“接近度”.在研究“接近度”時(shí),應(yīng)保證相似圖形的“接近度”相等.
(1)設(shè)菱形相鄰兩個(gè)內(nèi)角的度數(shù)分別為m°和n°,將菱形的“接近度”定義為|m-n|,于是|m-n|越小,菱形越接近于正方形.
①若菱形的一個(gè)內(nèi)角為70°,則該菱形的“接近度”等于
 
;
②當(dāng)菱形的“接近度”等于
 
時(shí),菱形是正方形.
(2)設(shè)矩形相鄰兩條邊長(zhǎng)分別是a和b(a≤b),將矩形的“接近度”定義為|a-b|,于是|a-b|越小,矩形越接近于正方形.
你認(rèn)為這種說(shuō)法是否合理?若不合理,給出矩形的“接近度”一個(gè)合理定義.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

15、如圖,菱形,矩形與正方形的形狀有差異,我們將菱形、矩形與正方形的接近程度稱為“接近度”.在研究“接近度”時(shí),應(yīng)保證相似圖形的“接近度”相等.設(shè)菱形相鄰兩個(gè)內(nèi)角的度數(shù)分別為m°和n°,將菱形的“接近度”定義為|m-n|,于是,|m-n|越小,菱形越接近于正方形.
①若菱形的一個(gè)內(nèi)角為70°,則該菱形的“接近度”等于
40
;
②當(dāng)菱形的“接近度”等于
0
時(shí),菱形是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年初中畢業(yè)升學(xué)考試(江蘇常州卷)數(shù)學(xué)(帶解析) 題型:解答題

如圖,菱形、矩形與正方形的形狀有差異,我們將菱形、矩形與正方形的接近程度稱為“接近度”.在研究“接近度”時(shí),應(yīng)保證相似圖形的“接近度”相等.
(1)設(shè)菱形相鄰兩個(gè)內(nèi)角的度數(shù)分別為,將菱形的“接近度”定義為,于是,越小,菱形越接近于正方形.
①若菱形的一個(gè)內(nèi)角為,則該菱形的“接近度”等于        ;
②當(dāng)菱形的“接近度”等于       時(shí),菱形是正方形.

(2)設(shè)矩形相鄰兩條邊長(zhǎng)分別是),將矩形的“接近度”定義為,于是越小,矩形越接近于正方形.
你認(rèn)為這種說(shuō)法是否合理?若不合理,給出矩形的“接近度”一個(gè)合理定義.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年初中數(shù)學(xué)單元提優(yōu)測(cè)試卷-相似圖形(解析版) 題型:填空題

如圖,菱形,矩形與正方形的形狀有差異,我們將菱形、矩形與正方形的接近程度稱為“接近度”.在研究“接近度”時(shí),應(yīng)保證相似圖形的“接近度”相等.設(shè)菱形相鄰兩個(gè)內(nèi)角的度數(shù)分別為m°和n°,將菱形的“接近度”定義為|m﹣n|,于是,|m﹣n|越小,菱形越接近于正方形.

①若菱形的一個(gè)內(nèi)角為70°,則該菱形的“接近度”等于 _________ ;

②當(dāng)菱形的“接近度”等于 _________ 時(shí),菱形是正方形.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案