△ABC中,∠BAC=90°,∠B=60°,AD⊥BC于D,AE是斜邊上的中線(xiàn),若DB=4,則AB=    ,BC=   
【答案】分析:此題考查三角形的性質(zhì)和等邊三角形的判定,根據(jù)直角三角形的性質(zhì)和等邊三角形的判定求解.
解答:解:∵AE是斜邊上的中線(xiàn)
∴AE=BE
∵∠B=60°
∴△ABE是等邊三角形
又∵AD⊥BC
∴∠BAD=30°
∴AB=2DB=8;
∴BC=2AB=16.
點(diǎn)評(píng):本題是一道根據(jù)直角三角形的性質(zhì)和等邊三角形的判定求解的綜合題,有利于鍛煉學(xué)生綜合運(yùn)用所學(xué)知識(shí)的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

18、如圖,在△ABC中,∠BAC=60°,BD、CE分別是邊AC,AB上的高,BD、CE相交于點(diǎn)O,則∠BOC的度數(shù)是
120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,△ABC中,∠BAC=60°,AB=2AC.點(diǎn)P在△ABC內(nèi),且PA=
3
,PB=5,PC=2,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠BAC=90°,AB=AC=a,AD是△ABC的高,則AD的長(zhǎng)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

93、如圖所示,在△ABC中,∠BAC=90°,AD⊥BC于D,BF平分∠ABC,那么△AEF是等腰三角形嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•達(dá)州)通過(guò)類(lèi)比聯(lián)想、引申拓展研究典型題目,可達(dá)到解一題知一類(lèi)的目的.下面是一個(gè)案例,請(qǐng)補(bǔ)充完整.
原題:如圖1,點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,連接EF,則EF=BE+DF,試說(shuō)明理由.

(1)思路梳理
∵AB=AD,
∴把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合.
∵∠ADC=∠B=90°,
∴∠FDG=180°,點(diǎn)F、D、G共線(xiàn).
根據(jù)
SAS
SAS
,易證△AFG≌
△AEF
△AEF
,得EF=BE+DF.
(2)類(lèi)比引申
如圖2,四邊形ABCD中,AB=AD,∠BAD=90°點(diǎn)E、F分別在邊BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,則當(dāng)∠B與∠D滿(mǎn)足等量關(guān)系
∠B+∠D=180°
∠B+∠D=180°
時(shí),仍有EF=BE+DF.
(3)聯(lián)想拓展
如圖3,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D、E均在邊BC上,且∠DAE=45°.猜想BD、DE、EC應(yīng)滿(mǎn)足的等量關(guān)系,并寫(xiě)出推理過(guò)程.

查看答案和解析>>

同步練習(xí)冊(cè)答案