【題目】如圖,AB是⊙O的直徑,點F、C是⊙O上兩點,且 = = ,連接AC、AF,過點C作CD⊥AF,交AF的延長線于點D,垂足為D,若CD=2 ,則⊙O的半徑為(
A.2
B.4
C.2
D.4

【答案】D
【解析】解:連結(jié)BC,如圖, ∵AB為直徑,
∴∠ACB=90°,
= =
∴∠BOC= ×180°=60°,
∴∠BAC=30°,
∴∠DAC=30°,
在Rt△ADC中,CD=2 ,
∴AC=2CD=4 ,
在Rt△ACB中,BC2+AC2=AB2 ,
即(4 2+( AB)2=AB2 ,
∴AB=8,
∴⊙O的半徑為4.
故選D.

【考點精析】解答此題的關(guān)鍵在于理解圓心角、弧、弦的關(guān)系的相關(guān)知識,掌握在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等;在同圓或等圓中,同弧等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半,以及對圓周角定理的理解,了解頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點C的坐標為(1,0),頂點A的坐標為(0,2),頂點B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當頂點A恰好落在該雙曲線上時停止運動,則此時點C的對應點C′的坐標為( )

A.( ,0)
B.(2,0)
C.( ,0)
D.(3,0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,D在AC邊上,BD=CD,E在BC邊上,AE=AB,過點E作EF⊥BC,交AC于F.若AD=5,CE=8,則EF的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系內(nèi),點O為坐標原點,直線y= x+1與拋物線y= x2+bx+c交于A,B兩點,點A在x軸上,點B的橫坐標為4.

(1)求拋物線的解析式;
(2)拋物線y= x2+bx+c 交x軸正半軸于點C,橫坐標為t的點P在第四象限的拋物線上,過點P作AB的垂線交x軸于點E,點Q為垂足,設CE的長為d,求d與t之間的函數(shù)關(guān)系式,直接寫出自變量t的取值范圍:
(3)在(2)的條件下,過點B作y軸的平行線交x軸于點D,連接DQ.當∠AQD=3∠PQD時,求點P坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了維護海洋權(quán)益,新組建的國家海洋局加大了在南海的巡邏力度,一天,我兩艘海監(jiān)船剛好在我某島東西海岸線上的A、B兩處巡邏,同時發(fā)現(xiàn)一艘不明國籍的船只停在C處海域.如圖所示,AB=60( )海里,在B處測得C在北偏東45°的方向上,A處測得C在北偏西30°的方向上,在海岸線AB上有一燈塔D,測得AD=120( )海里.

(1)分別求出A與C及B與C的距離AC、BC(結(jié)果保留根號)
(2)已知在燈塔D周圍100海里范圍內(nèi)有暗礁群,我在A處海監(jiān)船沿AC前往C處盤查,圖中有無觸礁的危險?
(參考數(shù)據(jù): =1.41, =1.73, =2.45)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了了解學生在家使用電腦的情況(分為“總是、較多、較少、不用”四種情況),隨機在八、九年級各抽取相同數(shù)量的學生進行調(diào)查,繪制成部分統(tǒng)計圖如下所示.請根據(jù)圖中信息,回答下列問題:
(1)九年級一共抽查了名學生,圖中的a= , “總是”對應的圓心角為度.
(2)根據(jù)提供的信息,補全條形統(tǒng)計圖.
(3)若該校九年級共有900名學生,請你統(tǒng)計其中使用電腦情況為“較少”的學生有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c與x軸相交于A、B兩點,與y軸相交于點C,且點B與點C的坐標分別為B(3,0).C(0,3),點M是拋物線的頂點.

(1)求二次函數(shù)的關(guān)系式;
(2)點P為線段MB上一個動點,過點P作PD⊥x軸于點D.若OD=m,△PCD的面積為S,試判斷S有最大值或最小值?并說明理由;
(3)在MB上是否存在點P,使△PCD為直角三角形?如果存在,請直接寫出點P的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某食品廠“端午節(jié)”期間,為了解市民對肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)四種不同口味粽子的喜愛情況,對某居民區(qū)進行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計圖(尚不完整). 請根據(jù)以上信息回答:

(1)本次參加抽樣調(diào)查的居民有多少人?
(2)將不完整的條形圖補充完整.
(3)若居民區(qū)有6000人,請估計愛吃C粽的人數(shù)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,C,E是直線l兩側(cè)的點,以C為圓心,CE長為半徑畫弧交l于A,B兩點,又分別以A,B為圓心,大于 AB的長為半徑畫弧,兩弧交于點D,連接CA,CB,CD,下列結(jié)論不一定正確的是(

A.CD⊥l
B.點A,B關(guān)于直線CD對稱
C.點C,D關(guān)于直線l對稱
D.CD平分∠ACB

查看答案和解析>>

同步練習冊答案