【題目】已知x=1是一元二次方程(m+1)x-mx+2m+3=0的一個(gè)根。
(1)求m的值,并寫(xiě)出此時(shí)的一元二次方程的一般形式
(2)把方程兩根分別記為,,不解方程,求+的值。
【答案】(1) m=4,(2)
【解析】
(1)把x=1代入一元二次方程(m+1)x-mx+2m+3=0可得: m+1-m+2m+3=0,解方程
可得:m1=4, m2=-1,根據(jù)一元二次方程二次項(xiàng)系數(shù)不能為0,可得m≠-1,所以m=4,
(2)由(1)可得一元二次方程是5x-16x+11=0,由韋達(dá)定理可得:,,由于,將,,代入即可求解.
(1)因?yàn)?/span>x=1是一元二次方程的根,
所以m+1-m+2m+3=0,
解得:m1=4, m2=-1,
因?yàn)?/span>,
所以,
所以m=4,
(2) (1)可得一元二次方程是5x-16x+11=0,由韋達(dá)定理可得:,,
又因?yàn)?/span>,
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線AB:y=-x-b分別與x,y軸交于A(6,0)、B兩點(diǎn),過(guò)點(diǎn)B的直線交x軸負(fù)半軸于C,且OB:OC=3:1.
(1)求點(diǎn)B的坐標(biāo);
(2)求直線BC的解析式;
(3)直線EF:y=2x-k(k≠0)交AB于E,交BC于點(diǎn)F,交x軸于點(diǎn)D,是否存在這樣的直線EF,使得S△EBD=S△FBD?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BE與CD相交于點(diǎn)A,CF為∠BCD的平分線,EF為∠BED的平分線,EF與CD交于點(diǎn)M,CF與BE交于點(diǎn)N.
(1)若∠D=70°,∠BED=30°,則∠EMA= (度);
(2)若∠B=60°,∠BCD=40°,則∠ENC= (度);
(3)∠F與∠B、∠D有怎樣的數(shù)量關(guān)系?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為滿足市場(chǎng)需求,新生活超市在端午節(jié)前夕購(gòu)進(jìn)價(jià)格為3元/個(gè)的某品牌粽子,根據(jù)市場(chǎng)預(yù)測(cè),該品牌粽子每個(gè)售價(jià)4元時(shí),每天能出售500個(gè),并且售價(jià)每上漲0.1元,其銷售量將減少10個(gè),為了維護(hù)消費(fèi)者利益,物價(jià)部門(mén)規(guī)定,該品牌粽子售價(jià)不能超過(guò)進(jìn)價(jià)的200%,請(qǐng)你利用所學(xué)知識(shí)幫助超市給該品牌粽子定價(jià),使超市每天的銷售利潤(rùn)為800元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB邊上的中點(diǎn),點(diǎn)D、E分別在AC、BC邊上運(yùn)動(dòng),且保持AD=CE.連接DE、DF、EF.在此運(yùn)動(dòng)變化的過(guò)程中,下列結(jié)論:①△DFE是等腰直角三角形;②DE長(zhǎng)度的最小值為4;③四邊形CDFE的面積保持不變;④△CDE面積的最大值為8.其中正確的結(jié)論是( 。
A.①②③B.①③C.①③④D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠BAC=30°,E為AB邊的中點(diǎn),以BE為邊作等邊△BDE,連接AD,CD.
(1)求證:△ADE≌△CDB;
(2)若BC=1,在AC邊上找一點(diǎn)H,使得BH+EH最小,并求出這個(gè)最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在 Rt△ABC 中,∠BAC=90°,AD⊥BC 于 D,BE 平分∠ABC 交 AC 于 E, 交 AD 于 F,FG∥BC,FH∥AC,下列結(jié)論:①AE=AF;②ΔABF≌ΔHBF;③AG=CE;④AB+FG=BC,其中正確的結(jié)論有()
A.①②③B.①③④C.①②③④D.①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,△ABC在正方形網(wǎng)格中,若點(diǎn)A的坐標(biāo)為(0,3),按要求回答下列問(wèn)題:
(1)在圖中建立正確的平面直角坐標(biāo)系;
(2)根據(jù)所建立的坐標(biāo)系,寫(xiě)出點(diǎn)B和點(diǎn)C的坐標(biāo);
(3)作出△ABC關(guān)于x軸的對(duì)稱圖形△A′B′C′.(不用寫(xiě)作法)
(4)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)的圖象與軸交于點(diǎn),,交軸于點(diǎn),點(diǎn),是二次函數(shù)圖象上關(guān)于拋物線對(duì)稱軸的一對(duì)對(duì)稱點(diǎn),一次函數(shù)的圖象過(guò)點(diǎn),.
請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo);
求二次函數(shù)的解析式;
根據(jù)圖象直接寫(xiě)出一次函數(shù)值大于二次函數(shù)值的的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com