數(shù)學(xué)游戲題
如圖是一個(gè)三階幻方,有9個(gè)數(shù)字構(gòu)成,并且每橫行,豎行和對(duì)角線上的3個(gè)數(shù)字的和都相等,試填出空格中的數(shù).
14 -2 9
2
2
7
7
12
12
5
5
16
0
0
分析:先根據(jù)第一行求出三個(gè)數(shù)的和,然后求出第二列中間的數(shù),根據(jù)對(duì)角線的數(shù)求出第三列最下邊的數(shù),再求出其余的數(shù),從而得解.
解答:解:由分析,填表如下:
14 -2 9
2 7 12
5 16 0
點(diǎn)評(píng):本題考查了有理數(shù)的加法,根據(jù)表格,先求出第一行的三個(gè)數(shù)的和是解題的關(guān)鍵,也是本題的突破口.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

數(shù)學(xué)游戲題
(1)如圖是一個(gè)三階幻方,有9個(gè)數(shù)字構(gòu)成,并且每橫行,豎行和對(duì)角線上的3個(gè)數(shù)字的和都相等,試填出空格中的數(shù).
(2)有一種“二十四點(diǎn)”的游戲(即算24游戲),其游戲規(guī)則是這樣的:任取四個(gè)1至13之間的自然數(shù),將這四個(gè)數(shù)(每個(gè)數(shù)用且只能用一次)進(jìn)行加減乘除四則運(yùn)算,使其結(jié)果等于24.例如對(duì)1,2,3,4,可作如下運(yùn)算:(1+2+3)×4=24(上述運(yùn)算與4×(1+2+3)視為相同方法的運(yùn)算)
①給出有理數(shù)4,6,9,12;請(qǐng)你寫出一個(gè)算式使其結(jié)果為24.
②在我們學(xué)過負(fù)數(shù)以后這個(gè)游戲仍可以玩,如-2,-3,4,5可以列出算式-2×(-3-4-5)=24;現(xiàn)給出3,-5,6,-8四個(gè)數(shù),請(qǐng)你寫出一個(gè)算式使其結(jié)果為24.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

在數(shù)學(xué)文化節(jié)第一輪活動(dòng)中,我們以探討一個(gè)趣題的方式紀(jì)念了數(shù)學(xué)大師歐拉誕辰300周年.著名數(shù)學(xué)家拉普拉斯說過:“讀讀歐拉,他是我們所有人的導(dǎo)師.”是啊!歐拉在數(shù)學(xué)上的貢獻(xiàn)實(shí)在太多了,即使在初等數(shù)學(xué)中也到處可見他的身影.我們?cè)賮砜纯礆W拉研究過的“36軍官問題”:
從6支部隊(duì)中各選出6名不同軍銜的軍官,將這36名軍官排成一個(gè)6行6列的方陣,要求每行每列的6個(gè)軍官分別來自不同的部隊(duì),并具有不同的軍銜.用大寫字母A,B,C,D,E,F(xiàn)分別表示6支不同的部隊(duì),用小寫字母a,b,c,d,e,f分別表示6種不同的軍銜,于是問題轉(zhuǎn)化為:在6×6的方格陣中,每個(gè)方格分別填入一個(gè)大寫字母和一個(gè)小寫字母,使每行和每列中的大小寫字母只能各出現(xiàn)一次(通常稱這種方陣為歐拉方陣或正交拉丁方).歐拉攪盡腦汁,也沒能排出符合要求的6×6方陣,他猜想并不存在這樣的6×6方陣.100多年以后,才有人證明了歐拉的這個(gè)猜想是正確的.
于是歐拉繼而探究了其他情形,例如,他分別作出了3×3,4×4,5×5正交拉丁方,并證明了當(dāng)n除以4的余數(shù)不等于2時(shí),n×n正交拉丁方是存在的.
正交拉丁方在藥品配方試驗(yàn)設(shè)計(jì)等方面有著廣泛應(yīng)用.現(xiàn)在流行的“數(shù)獨(dú)”游戲和比賽,就是發(fā)源于拉丁方問題呢!
如圖是一個(gè)5×5正交拉丁方,請(qǐng)將剩余的字母填上

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屾盯骞橀懠顒夋М闂佹悶鍔嶇换鍐Φ閸曨垰鍐€妞ゆ劦婢€缁墎绱撴担鎻掍壕婵犮垼娉涢鍕崲閸℃稒鐓忛柛顐g箖閸f椽鏌涢敐鍛础缂佽鲸甯¢幃鈺呮濞戞帗鐎伴梻浣告惈閻ジ宕伴弽顓犲祦闁硅揪绠戠粻娑㈡⒒閸喓鈯曟い鏂垮濮婄粯鎷呴崨濠傛殘婵烇絽娲﹀浠嬫晲閻愭潙绶為柟閭﹀劦閿曞倹鐓曢柡鍥ュ妼閻忕姵淇婇锝忚€块柡灞剧洴閳ワ箓骞嬪┑鍥╀壕缂傚倷绀侀鍛崲閹版澘鐓橀柟杈鹃檮閸婄兘鏌ょ喊鍗炲闁告柨鎲$换娑氣偓娑欋缚閻倕霉濠婂簼绨绘い鏇稻缁绘繂顫濋鐔割仧闂備胶绮灙閻忓繑鐟╁畷鎰版倷閻戞ǚ鎷洪柣搴℃贡婵敻濡撮崘鈺€绻嗛柣鎰綑濞搭喗顨ラ悙宸剱妞わ妇澧楅幆鏃堟晲閸ラ搴婇梻鍌欒兌缁垶宕濋敃鍌氱婵炲棙鎸哥粈澶愭煏閸繃顥撳ù婊勭矋閵囧嫰骞樼捄鐩掋垽鏌涘Ο铏规憼妞ゃ劊鍎甸幃娆撳箵閹烘挻顔勯梺鍓х帛閻楃娀寮诲☉妯锋闁告鍋為悘鍫熺箾鐎电ǹ顎岄柛娆忓暙椤繘鎼归崷顓狅紲濠殿喗顨呭Λ娆撴偩閸洘鈷戠紓浣癸供濞堟棃鏌ㄩ弴銊ら偗闁绘侗鍠涚粻娑樷槈濞嗘垵濮搁柣搴$畭閸庡崬螞瀹€鍕婵炲樊浜濋埛鎴︽煕濞戞﹫鍔熺紒鐘虫崌閹顫濋悡搴$睄闂佽桨绀佺粔鐟邦嚕椤曗偓瀹曟帒饪伴崪鍐簥闂傚倷绀侀幖顐ゆ偖椤愶箑纾块柟鎯板Г閸嬧晜绻涘顔荤凹闁绘挻绋戦湁闁挎繂鎳忛幉鎼佸极閸惊鏃堟偐闂堟稐绮跺┑鐐叉▕閸欏啴濡存笟鈧浠嬵敇閻愰潧骞愰梻浣告啞閸旀垿宕濆澶嬪€堕柛顐犲劜閸婄敻鎮峰▎蹇擃仾缂佲偓閸愨斂浜滈柕濞垮劵闊剚顨ラ悙璇ц含鐎殿喕绮欓、姗€鎮欓棃娑樼闂傚倷绀侀幉锟犲礉閹达箑绀夐幖娣妼绾惧綊鏌ㄩ悤鍌涘

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

數(shù)學(xué)游戲題
(1)如圖是一個(gè)三階幻方,有9個(gè)數(shù)字構(gòu)成,并且每橫行,豎行和對(duì)角線上的3個(gè)數(shù)字的和都相等,試填出空格中的數(shù).
(2)有一種“二十四點(diǎn)”的游戲(即算24游戲),其游戲規(guī)則是這樣的:任取四個(gè)1至13之間的自然數(shù),將這四個(gè)數(shù)(每個(gè)數(shù)用且只能用一次)進(jìn)行加減乘除四則運(yùn)算,使其結(jié)果等于24.例如對(duì)1,2,3,4,可作如下運(yùn)算:(1+2+3)×4=24(上述運(yùn)算與4×(1+2+3)視為相同方法的運(yùn)算)
①給出有理數(shù)4,6,9,12;請(qǐng)你寫出一個(gè)算式使其結(jié)果為24.
②在我們學(xué)過負(fù)數(shù)以后這個(gè)游戲仍可以玩,如-2,-3,4,5可以列出算式-2×(-3-4-5)=24;現(xiàn)給出3,-5,6,-8四個(gè)數(shù),請(qǐng)你寫出一個(gè)算式使其結(jié)果為24.

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屾盯骞橀懠顒夋М闂佹悶鍔嶇换鍐Φ閸曨垰鍐€妞ゆ劦婢€缁墎绱撴担鎻掍壕婵犮垼娉涢鍕崲閸℃稒鐓忛柛顐g箖閸f椽鏌涢敐鍛础缂佽鲸甯¢幃鈺呮濞戞帗鐎伴梻浣告惈閻ジ宕伴弽顓犲祦闁硅揪绠戠粻娑㈡⒒閸喓鈯曟い鏂垮濮婄粯鎷呴崨濠傛殘婵烇絽娲﹀浠嬫晲閻愭潙绶為柟閭﹀劦閿曞倹鐓曢柡鍥ュ妼閻忕姵淇婇锝忚€块柡灞剧洴閳ワ箓骞嬪┑鍥╀壕缂傚倷绀侀鍛崲閹版澘鐓橀柟杈鹃檮閸婄兘鏌ょ喊鍗炲闁告柨鎲$换娑氣偓娑欋缚閻倕霉濠婂簼绨绘い鏇稻缁绘繂顫濋鐔割仧闂備胶绮灙閻忓繑鐟╁畷鎰版倷閻戞ǚ鎷洪柣搴℃贡婵敻濡撮崘鈺€绻嗛柣鎰綑濞搭喗顨ラ悙宸剱妞わ妇澧楅幆鏃堟晲閸ラ搴婇梻鍌欒兌缁垶宕濋敃鍌氱婵炲棙鎸哥粈澶愭煏閸繃顥撳ù婊勭矋閵囧嫰骞樼捄鐩掋垽鏌涘Ο铏规憼妞ゃ劊鍎甸幃娆撳箵閹烘挻顔勯梺鍓х帛閻楃娀寮诲☉妯锋闁告鍋為悘鍫熺箾鐎电ǹ顎岄柛娆忓暙椤繘鎼归崷顓狅紲濠殿喗顨呭Λ娆撴偩閸洘鈷戠紓浣癸供濞堟棃鏌ㄩ弴銊ら偗闁绘侗鍠涚粻娑樷槈濞嗘垵濮搁柣搴$畭閸庡崬螞瀹€鍕婵炲樊浜濋埛鎴︽煕濞戞﹫鍔熺紒鐘虫崌閹顫濋悡搴$睄闂佽桨绀佺粔鐟邦嚕椤曗偓瀹曟帒饪伴崪鍐簥闂傚倷绀侀幖顐ゆ偖椤愶箑纾块柟鎯板Г閸嬧晜绻涘顔荤凹闁绘挻绋戦湁闁挎繂鎳忛幉鎼佸极閸惊鏃堟偐闂堟稐绮跺┑鐐叉▕閸欏啴濡存笟鈧浠嬵敇閻愰潧骞愰梻浣告啞閸旀垿宕濆澶嬪€堕柛顐犲劜閸婄敻鎮峰▎蹇擃仾缂佲偓閸愨斂浜滈柕濞垮劵闊剚顨ラ悙璇ц含鐎殿喕绮欓、姗€鎮欓棃娑樼闂傚倷绀侀幉锟犲礉閹达箑绀夐幖娣妼绾惧綊鏌ㄩ悤鍌涘

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屻倝宕妷锔芥瘎婵炲濮甸懝楣冨煘閹寸偛绠犻梺绋匡攻椤ㄥ棝骞堥妸褉鍋撻棃娑欏暈鐎规洖寮堕幈銊ヮ渻鐠囪弓澹曢梻浣虹帛娓氭宕板☉姘变笉婵炴垶菤濡插牊绻涢崱妯哄妞ゅ繒鍠栧缁樻媴閼恒儳銆婇梺闈╃秶缁犳捇鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙绀冩い鏇嗗洤鐓橀柟杈鹃檮閸嬫劙鏌涘▎蹇fЧ闁诡喗鐟х槐鎾存媴閸濆嫷鈧矂鏌涢妸銉у煟鐎殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹