精英家教網(wǎng)已知:如圖,AB是半圓的直徑,AB=10,梯形ABCD內(nèi)接于半圓,CE∥AD交AB于E,BE=2,求∠A的余弦值.
分析:根據(jù)平行線所夾的弧相等得到弧AD=弧BC,再根據(jù)在同圓中弧相等弦相等得到AD=BC,則四邊形AECD為平行四邊形,得到CD=AE=AB-BE=8.設圓心為O,作OG⊥CD于G,連OC,根據(jù)垂徑定理得到DG=CG=4,利用勾股定理計算出OG,作DF⊥OA于F,則DF=OG=3,利用等腰梯形的性質(zhì)計算出AF,再根據(jù)勾股定理求出AD,最后利用余弦的定義求解即可.
解答:解:連OD,精英家教網(wǎng)如圖,
∵四邊形ABCD為梯形,
∴CD∥AB,
∴∠AOD=∠ODC,∠BOC=∠OCD,
而∠ODC=∠OCD,
∴∠AOD=∠BOC,
∴弧AD=弧BC,
∴AD=BC
又∵CE∥AD,
∴四邊形AECD為平行四邊形,
∴CD=AE=AB-BE=8
設圓心為O,作OG⊥CD于G,連OC,
∴DG=CG=4.
∴OG=
OC2-CG2
=3.
作DF⊥OA于F,則DF=OG=3,
AF=OA-OF=OA-DG=1.
∴AD=
AF2+DF2
=
10

∴∠A的余弦:cosA=
1
10
=
10
10
點評:本題考查了圓心角、弧、弦的關系;也考查了垂徑定理和勾股定理以及等腰梯形的性質(zhì).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,AB為⊙O的直徑,C、D是半圓弧上的兩點,E是AB上除O外的一點,AC與DE相交于F.①
AD
=
CD
,②DE⊥AB,③AF=DF.
(1)寫出“以①②③中的任意兩個為條件,推出第三個(結論)”的一個正確命題,并加以證明;
(2)“以①②③中的任意兩個為條件,推出笫三個(結論)”可以組成多少個正確的命題?(不必說明理由)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•沈陽)已知,如圖,在平面直角坐標系中,點A坐標為(-2,0),點B坐標為(0,2),點E為線段AB上的動點(點E不與點A,B重合),以E為頂點作∠OET=45°,射線ET交線段0B于點F,C為y軸正半軸上一點,且OC=AB,拋物線y=-
2
x2+mx+n的圖象經(jīng)過A,C兩點.
(1)求此拋物線的函數(shù)表達式;
(2)求證:∠BEF=∠AOE;
(3)當△EOF為等腰三角形時,求此時點E的坐標;
(4)在(3)的條件下,當直線EF交x軸于點D,P為(1)中拋物線上一動點,直線PE交x軸于點G,在直線EF上方的拋物線上是否存在一點P,使得△EPF的面積是△EDG面積的(2
2
+1)倍?若存在,請直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009-2010學年吉林省長春市外國語學校九年級(上)期中數(shù)學試卷(解析版) 題型:解答題

已知:如圖,AB為⊙O的直徑,C、D是半圓弧上的兩點,E是AB上除O外的一點,AC與DE相交于F.①,②DE⊥AB,③AF=DF.
(1)寫出“以①②③中的任意兩個為條件,推出第三個(結論)”的一個正確命題,并加以證明;
(2)“以①②③中的任意兩個為條件,推出笫三個(結論)”可以組成多少個正確的命題?(不必說明理由)

查看答案和解析>>

科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《圓》(09)(解析版) 題型:解答題

(2003•綿陽)已知:如圖,AB為⊙O的直徑,C、D是半圓弧上的兩點,E是AB上除O外的一點,AC與DE相交于F.①,②DE⊥AB,③AF=DF.
(1)寫出“以①②③中的任意兩個為條件,推出第三個(結論)”的一個正確命題,并加以證明;
(2)“以①②③中的任意兩個為條件,推出笫三個(結論)”可以組成多少個正確的命題?(不必說明理由)

查看答案和解析>>

科目:初中數(shù)學 來源:2003年四川省綿陽市中考數(shù)學試卷(解析版) 題型:解答題

(2003•綿陽)已知:如圖,AB為⊙O的直徑,C、D是半圓弧上的兩點,E是AB上除O外的一點,AC與DE相交于F.①,②DE⊥AB,③AF=DF.
(1)寫出“以①②③中的任意兩個為條件,推出第三個(結論)”的一個正確命題,并加以證明;
(2)“以①②③中的任意兩個為條件,推出笫三個(結論)”可以組成多少個正確的命題?(不必說明理由)

查看答案和解析>>

同步練習冊答案