為了落實(shí)國務(wù)院的指示精神,某地方政府出臺了一系列“三農(nóng)”優(yōu)惠政策,使農(nóng)民收入大幅度增加.某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)產(chǎn)品,已知這種產(chǎn)品的成本價(jià)為每千克20元,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價(jià)x(元/千克)有如下關(guān)系:y=﹣2x+80.設(shè)這種產(chǎn)品每天的銷售利潤為w元.
(1)求w與x之間的函數(shù)關(guān)系式.
(2)該產(chǎn)品銷售價(jià)定為每千克多少元時,每天的銷售利潤最大?最大利潤是多少元?
(3)如果物價(jià)部門規(guī)定這種產(chǎn)品的銷售價(jià)不高于每千克28元,該農(nóng)戶想要每天獲得150元的銷售利潤,銷售價(jià)應(yīng)定為每千克多少元?
(1) w與x的函數(shù)關(guān)系式為:w=﹣2x2+120x﹣1600;(2) 當(dāng)x=30時,w有最大值.w最大值為200;(3)該農(nóng)戶想要每天獲得150元的銷售利潤,銷售價(jià)應(yīng)定為每千克25元.
【解析】
試題分析:(1)銷售利潤w等于每千克的利潤(x-20)乘以銷售數(shù)量y,故得到關(guān)系式:w=(x﹣20)∙y,再由y=-2x+80,代入得:y=(x﹣20)(﹣2x+80),然后化簡即可.(2)由(1)得到w=﹣2x2+120x﹣1600,然后對這個函數(shù)式配方,化成頂點(diǎn)式,得到y(tǒng)=﹣2(x﹣30)2+200,當(dāng)x=30時,函數(shù)有最大值,最大值為200,即售價(jià)定為30元時,每天的利潤最大,最大利潤是200元.(3)將w=150代入函數(shù)關(guān)系式w=﹣2(x﹣30)2+200得﹣2(x﹣30)2+200=150,解得:x1=25,x2=35,由于售價(jià)不能高于每千克28元,所以售價(jià)應(yīng)定為每千克25元.歸納:方程求出解后,一定要出兩個方面檢驗(yàn)根的正確性,一、檢驗(yàn)是否是原方程的解;二、是否符合實(shí)際情況.
試題解析:(1)由題意得出:w=(x﹣20)∙y=(x﹣20)(﹣2x+80)=﹣2x2+120x﹣1600,
故w與x的函數(shù)關(guān)系式為:w=﹣2x2+120x﹣1600;
(2)w=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,
∵﹣2<0,∴當(dāng)x=30時,w有最大值.w最大值為200.
答:該產(chǎn)品銷售價(jià)定為每千克30元時,每天銷售利潤最大,最大銷售利潤200元.
(3)當(dāng)w=150時,可得方程﹣2(x﹣30)2+200=150.
解得 x1=25,x2=35. ∵35>28,
∴x2=35不符合題意,應(yīng)舍去.
答:該農(nóng)戶想要每天獲得150元的銷售利潤,銷售價(jià)應(yīng)定為每千克25元.
考點(diǎn):1、二次函數(shù)的應(yīng)用;2、一元二次方程的應(yīng)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年浙江金華聚仁教育集團(tuán)九年級上學(xué)期第二階段考試數(shù)學(xué)試卷(解析版) 題型:解答題
為了落實(shí)國務(wù)院的指示精神,地方政府出臺了一系列“三農(nóng)”優(yōu)惠政策,使農(nóng)民收入大幅度增加.某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)產(chǎn)品,已知這種產(chǎn)品的成本價(jià)為每千克20元,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價(jià)x(元/千克)有如下關(guān)系:. 設(shè)這種產(chǎn)品每天的銷售利潤為w元.
(1)求w與x之間的函數(shù)關(guān)系式;
(2)該產(chǎn)品銷售價(jià)定為每千克多少元時,每天的銷售利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇東臺創(chuàng)新學(xué)校九年級上學(xué)期第二次階段測試數(shù)學(xué)試卷(解析版) 題型:解答題
為了落實(shí)國務(wù)院的指示精神,某地方政府出臺了一系列“三農(nóng)”優(yōu)惠政策,使農(nóng)民收入大幅度增加.某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)產(chǎn)品,已知這種產(chǎn)品的成本價(jià)為每千克20元,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價(jià)x(元/千克)有如下關(guān)系:y=﹣2x+80.設(shè)這種產(chǎn)品每天的銷售利潤為w元.
(1)求w與x之間的函數(shù)關(guān)系式.
(2)該產(chǎn)品銷售價(jià)定為每千克多少元時,每天的銷售利潤最大?最大利潤是多少元?
(3)如果物價(jià)部門規(guī)定這種產(chǎn)品的銷售價(jià)不高于每千克28元,該農(nóng)戶想要每天獲得150元的銷售利潤,銷售價(jià)應(yīng)定為每千克多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com