【題目】已知二次函數(shù)的圖象與軸交于、兩點(右),與軸交于

)求的值.

)若為二次函數(shù)圖象的頂點,求證:

)若為二次函數(shù)圖象上一點,且,求點的坐標.

【答案】(1)1;(2)證明見解析;(3)

【解析】試題分析:(1)把代入即可求得a值;(2)先求得拋物線的頂點坐標,利用勾股定理求得AC、BCPC、PB的值,再利用三邊對應成比例的兩個三角形相似判定,即可得結論;(3)分兩種情況:當QBC的下方時,由(2)可知,點Q和點P重合;當點QBC的上方時,連接,延長,使連接交二次函數(shù)圖象于點先求得點E的坐標,再求得EC的解析式,直線EC與拋物線的交點坐標即為點Q的坐標.

試題解析:

軸交于點

)連接, , ,

, ,

,

)連接,延長,使

,

的中點為

連接交二次函數(shù)圖象于點

由()可知,當在頂點時, ,

的垂直平分線.

所在直線: ,

∴將代入得,

解得

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC是等腰直角三角形,AB=,把△ABC沿直線BC向右平移得到△DEF.如果E是BC的中點,AC與DE交于P點,以直線BC為x軸,點E為原點建立直角坐標系.

(1)求△ABC與△DEF的頂點坐標;

(2)判斷△PEC的形狀;

(3)求△PEC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為6厘米,點E在邊AB上,且AE=4厘米,如果點P在線段BC上以2厘米/秒的速度由B點向C點運動,同時,點Q在線段CD上由點C向點D運動,設運動時間為t秒。

1)若點Q的運動速度與點P的運動速度相等,經(jīng)過2秒后,EPPQ有什么關系?請說明理由。

2)若點Q的運動速度與點P的運動速度不相等,則當t為何值時,能使得EPBCQP全等?此時點Q的運動速度為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用兩個全等的等邊三角形△ABC和△ACD拼成菱形ABCD.把一個含60°角的三角尺與這個菱形疊合,使三角尺的60°角的頂點與點A重合,兩邊分別與AB,AC重合.將三角尺繞點A按逆時針方向旋轉.

1)當三角尺的兩邊分別與菱形的兩邊BC,CD相交于點E,F時,(如圖1),通過觀察或測量BE,CF的長度,你能得出什么結論并證明你的結論;

2)當三角尺的兩邊分別與菱形的兩邊BCCD的延長線相交于點E,F時(如圖2),你在(1)中得到的結論還成立嗎?簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖(1),在正方形一邊上取中點,并沿虛線剪開,用兩塊圖形拼一拼,能否拼出平行四邊形、梯形或三角形?畫圖解釋你的判斷.

2)如圖(2E為正方形ABCDBC的中點,FDC的中點,BFAE有何關系?請解釋你的結論。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某汽車專賣店銷售A,B兩種型號的新能源汽車.上周售出1A型車和3B型車,銷售額為96萬元;本周已售出2A型車和1B型車,銷售額為62萬元.

1)求每輛A型車和B型車的售價各為多少萬元?

2)甲公司擬向該店購買A,B兩種型號的新能源汽車共6輛,且A型號車不少于2輛,購車費不少于130萬元,則有哪幾種購車方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形ABCD中,以BF為底向正方形外側作等腰直角三角形BEF,連接DF,取DF的中點G,連接EG,CG.

(1)如圖1,當點A與點F重合時,猜想EGCG的數(shù)量關系為   ,EGCG的位置關系為   ,請證明你的結論.

(2)如圖2,當點FAB上(不與點A重合)時,(1)中結論是否仍然成立?請說明理由;如圖3,點FAB的左側時,(1)中的結論是否仍然成立?直接做出判斷,不必說明理由.

(3)在圖2中,若BC=4,BF=3,連接EC,求的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,AB=AC,點D是直線BC上一點(不與B、C重合),以AD為一邊在AD的右側作△ADE,使AD=AE,∠DAE=BAC,連接CE

1)如圖1,當點D在線段BC上,如果∠BAC=90°,則∠BCE=______度;
2)設∠BAC=α,∠BCE=β.
①如圖2,當點D在線段BC上移動,則α,β之間有怎樣的數(shù)量關系?請說明理由;
②當點D在直線BC上移動,則α,β之間有怎樣的數(shù)量關系?請直接寫出你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】火車站有某公司待運的甲種貨物1530,乙種貨物1150,現(xiàn)計劃用50節(jié)A,B兩種型號的車廂將這批貨物運至北京,已知每節(jié)A型車廂的運費是0.5萬元,每節(jié)B型車廂的運費是0.8萬元;甲種貨物35噸和乙種貨物15噸可裝滿一節(jié)A型車廂,甲種貨物25噸和乙種貨物35噸可裝滿一節(jié)B型車廂,按此要求安排A,B兩種車廂的節(jié)數(shù),共有哪幾種方案?請你設計出所有方案,并說明哪種方案的運費最少.

查看答案和解析>>

同步練習冊答案