【題目】2009年5月17日至21日,甲型H1N1流感在日本迅速蔓延,每天的新增病例和累計確診病例人數(shù)如圖所示.
(1)在5月17日至5月21日這5天中,日本平均每天新增加甲型H1N1流感確診病例多少人?如果接下來的5天中,繼續(xù)按這個平均數(shù)增加,那么到5月26日,日本甲型H1N1流感累計確診病例將會達到多少人?
(2)甲型H1N1流感病毒的傳染性極強,某地因1人患了甲型H1N1流感沒有及時隔離治療,經(jīng)過兩天傳染后共有9人患了甲型H1N1流感,每天傳染中平均一個人傳染了幾個人?如果按照這個傳染速度,再經(jīng)過5天的傳染后,這個地區(qū)一共將會有多少人患甲型H1N1流感?
【答案】(1)在5月17日至5月21日這5天中,日本平均每天新增加甲型H1N1流感確診病例52.6人,日本甲型H1N1流感累計確診病例將會達到530人;(2)每天傳染中平均一個人傳染了2人,再5天共有2187人患甲型H1N1流感.
【解析】
(1)從統(tǒng)計圖上可看出5天共增加了多少人,然后可求出平均人數(shù),進而可求出5月26日,日本甲型H1N1流感累計確診病例將會達到多少人.
(2)設(shè)平均一個人一天傳染x個人,第一天共有x+1人,第二天共傳染x(x+1)人,根據(jù)經(jīng)過兩天傳染后共有9人患了甲型H1N1流感,可列方程求解,進而可求出如果按照這個傳染速度,再經(jīng)過5天的傳染后,這個地區(qū)一共將會有多少人患甲型H1N1流感.
解:(1)(267﹣4)÷5=52.6(人).
267+52.6×5=530(人).
答:在5月17日至5月21日這5天中,日本平均每天新增加甲型H1N1流感確診病例52.6人,日本甲型H1N1流感累計確診病例將會達到530人.
(2)設(shè)平均一個人一天傳染x個人,
x(x+1)+x+1=9
x=2或x=﹣4(舍去).
再5天為:(1+2)7=2187,
答:每天傳染中平均一個人傳染了2人,再5天共有2187人患甲型H1N1流感.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)和一次函數(shù)相交于點,.
(1)求一次函數(shù)和反比例函數(shù)解析式;
(2)連接OA,試問在x軸上是否存在點P,使得為以OA為腰的等腰三角形,若存在,直接寫出滿足題意的點P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的頂點D關(guān)于射線CP的對稱點G落在正方形內(nèi),連接BG并延長交邊AD于點E,交射線CP于點F.連接DF,AF,CG.
(1)試判斷DF與BF的位置關(guān)系,并說明理由;
(2)若CF=4,DF=2,求AE的長;
(3)若∠ADF=2∠FAD,求tan∠FAD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店準(zhǔn)備進一批季節(jié)性小家電,每個進價為40元,經(jīng)市場預(yù)測,銷售定價為50元,可售出400個;定價每增加1元,銷售量將減少10個.設(shè)每個定價增加x元.
(1)寫出售出一個可獲得的利潤是多少元(用含x的代數(shù)式表示)?
(2)商店若準(zhǔn)備獲得利潤6000元,并且使進貨量較少,則每個定價為多少元?應(yīng)進貨多少個?
(3)商店若要獲得最大利潤,則每個應(yīng)定價多少元?獲得的最大利潤是多少?
【答案】(1)x+10元;(2)每個定價為70元,應(yīng)進貨200個.(3)每個定價為65元時得最大利潤,可獲得的最大利潤是6250元.
【解析】試題分析:(1)根據(jù)利潤=銷售價-進價列關(guān)系式,(2)總利潤=每個的利潤×銷售量,銷售量為400-10x,列方程求解,根據(jù)題意取舍,(3)利用函數(shù)的性質(zhì)求最值.
試題解析:由題意得:(1)50+x-40=x+10(元),
(2)設(shè)每個定價增加x元,
列出方程為:(x+10)(400-10x)=6000,解得:x1=10,x2=20,要使進貨量較少,則每個定價為70元,應(yīng)進貨200個,
(3)設(shè)每個定價增加x元,獲得利潤為y元,
y=(x+10)(400-10x)=-10x2+300x+4000=-10(x-15)2+6250,當(dāng)x=15時,y有最大值為6250,所以每個定價為65元時得最大利潤,可獲得的最大利潤是6250元.
【題型】解答題
【結(jié)束】
24
【題目】猜想與證明:
如圖1,擺放矩形紙片ABCD與矩形紙片ECGF,使B、C、G三點在一條直線上,CE在邊CD上,連接AF,若M為AF的中點,連接DM、ME,試猜想DM與ME的關(guān)系,并證明你的結(jié)論.
拓展與延伸:
(1)若將”猜想與證明“中的紙片換成正方形紙片ABCD與正方形紙片ECGF,其他條件不變,則DM和ME的關(guān)系為 .
(2)如圖2擺放正方形紙片ABCD與正方形紙片ECGF,使點F在邊CD上,點M仍為AF的中點,試證明(1)中的結(jié)論仍然成立.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名自行車愛好者準(zhǔn)備在段長為3500米的筆直公路上進行比賽,比賽開始時乙在起點,甲在乙的前面.他們同時出發(fā),勻速前進,已知甲的速度為12米/秒,設(shè)甲、乙兩人之間的距離為s(米),比賽時間為t(秒),圖中的折線表示從兩人出發(fā)至其中一人先到達終點的過程中s(米)與t(秒)的函數(shù)關(guān)系根據(jù)圖中信息,回答下列問題:
(1)乙的速度為多少米/秒;
(2)當(dāng)乙追上甲時,求乙距起點多少米;
(3)求線段BC所在直線的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】目前,某校九年級同學(xué)對“新冠疫情下停課不停學(xué)”線上學(xué)習(xí)的家長進行問卷調(diào)查,隨機調(diào)查了若干名家長對線上學(xué)習(xí)的態(tài)度(態(tài)度分為:A.無所謂;B.基本贊成;C.反對;D.贊成).并將調(diào)查結(jié)果繪制成頻數(shù)折線統(tǒng)計圖1和扇形統(tǒng)計圖2(不完整).請根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調(diào)查中,共調(diào)查了多少名中學(xué)生家長;
(2)求出圖2中扇形C所對的圓心角度數(shù),并將圖1補充完整;
(3)在此次調(diào)查活動中,初三(1)班有A1、A2兩位家長對線上學(xué)習(xí),持基本贊成的態(tài)度,初三(2)班有B1、B2兩位學(xué)生家長對線上學(xué)習(xí),也持基本贊成的態(tài)度,現(xiàn)從這4位家長中選2位家長參加學(xué)校組織的家;顒,用列表法或畫樹狀圖的方法求出選出的2人來自不同班級的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在正方形ABCD中,E是BC的中點,F是CD上一點,AE⊥EF,下列結(jié)論:①∠BAE=30°;②△ABE∽△AEF;③CD=3CF;④S△ABE=4S△ECF.其中正確的有_____(填序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,平行四邊形ABCD,對角線AC與BD相交于點E,點G為AD的中點,連接CG,CG的延長線交BA的延長線于點F,連接FD.
(1)求證:AB=AF;
(2)若AG=AB,∠BCD=120°,判斷四邊形ACDF的形狀,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com