【題目】如圖,在已知的△ABC中,按以下步驟作圖:①分別以A,B為圓心,以大于AB的長為半徑作弧,兩弧相交于兩點EF;②作直線EFBC于點D連接AD.若ADAC,∠C40°,則∠BAC的度數(shù)是( )

A.105°B.110°C.I15°D.120°

【答案】D

【解析】

利用基本作圖得到EF垂直平分AB,根據(jù)垂直平分線的性質可得DADB,根據(jù)等腰三角形的性質可得∠B=∠DAB,然后利用等腰三角形的性質可得∠ADC40°,根據(jù)三角形外角性質可得∠B20°,根據(jù)三角形內(nèi)角和定理即可得答案.

由作法得EF垂直平分AB,

DADB

∴∠B=∠DAB,

ADAC,∠C=40°,

∴∠ADC=∠C40°,

∵∠ADC=∠B+DAB,

∴∠BADC20°,

∴∠BAC180°-B-C=120°

故選:D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB=6cm,AC=BD=4cm.CAB=DBA=60 , P 在線段 AB 上以 1cm/s 的速度由點A 向點 B 運動,同時, Q 在線段 BD 上由點 B 向點 D 運動。它們運動的時間為 t(s),則點 Q的運動速度為________cm/s,使得 A. C. P 三點構成的三角形與 B. P、Q 三點構成的三角形全等。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1是一座立交橋的示意圖(道路寬度忽略不計), A為入口, F,G為出口,其中直行道為AB,CG,EF,且AB=CG=EF ;彎道為以點O為圓心的一段弧,且弧BC,弧ED,弧CD所對的圓心角均為90°.甲、乙兩車由A口同時駛入立交橋,均以10m/s的速度行駛,從不同出口駛出. 其間兩車到點O的距離ym)與時間x(s)的對應關系如圖2所示.結合題目信息,下列說法錯誤的是( )

A. 甲車在立交橋上共行駛8s B. F口出比從G口出多行駛40m

C. 甲車從F口出,乙車從G口出 D. 立交橋總長為150m

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC 中,AD 是∠BAC 的平分線,且 AD=AB,過點 C 作 AD 的垂線,交 AD 的延長線于點 H.

(1)如圖 1,若∠BAC=60°.

①直接寫出∠B 和∠ACB 的度數(shù);

②若 AB=2,求 AC 和 AH 的長;

(2)如圖 2,用等式表示線段 AH 與 AB+AC 之間的數(shù)量關系,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的方程(x-3)(x-2)-p2=0.

(1)求證:無論p取何值時,方程總有兩個不相等的實數(shù)根;

(2)設方程兩實數(shù)根分別為x1、x2,且滿足x12+x22=3 x1x2,求實數(shù)p的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,對稱軸為直線的拋物線與x軸相交于A、B兩點,其中A點的坐標為(-3,0)。

(1)求點B的坐標;

(2)已知,C為拋物線與y軸的交點。

若點P在拋物線上,且,求點P的坐標;

設點Q是線段AC上的動點,作QDx軸交拋物線于點D,求線段QD長度的最大值。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O中,FG、AC是直徑,AB是弦,FG⊥AB,垂足為點P,過點C的直線交AB的延長線于點D,交GF的延長線于點E,已知AB=4,⊙O的半徑為

(1)求線段AP的長;

(2)DE⊙O的切線,求線段OE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知ABCDCAB上一動點,ABCD

1)在圖1中,將BD繞點B逆時針方向旋轉90°BE,若連接DE,則△DBE為等腰直角三角形;若連接AE,試判斷AEBC的數(shù)量和位置關系并證明;

2)如圖2,FCD延長線上一點,且DFBC,直線AF,BD相交于點G,∠AGB的度數(shù)是一個固定值嗎?若是,請求出它的度數(shù);若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,五邊形是學校的一塊種植基地示意圖,這塊基地可以分成正方形,已知這個五邊形的周長為88米,正方形的面積為400平方米.

1)求正方形的周長;

2)求點邊的距離.

查看答案和解析>>

同步練習冊答案