(2004•岳陽(yáng))Rt△AOB中直角邊OA、OB分別在x軸、y軸的正半軸上,O為坐標(biāo)原點(diǎn),以F為圓心的圓與y軸、直線AB分別相切于O、D(如圖),若AD=2,AE=1.
(1)求BD的長(zhǎng)度;
(2)求經(jīng)過(guò)A、B兩點(diǎn)的直線的解析式;
(3)求經(jīng)過(guò)E、D、O三點(diǎn)的二次函數(shù)的解析式;
(4)判斷(3)中拋物線的頂點(diǎn)是否在直線AB上.

【答案】分析:(1)根據(jù)圓的切線的性質(zhì),連接DF,可得直角三角形,借助于方程,利用勾股定理求得圓的半徑,利用相似求得BD的長(zhǎng);
(2)根據(jù)(1)的結(jié)論可得A,B的坐標(biāo),利用待定系數(shù)法可求得經(jīng)過(guò)A、B兩點(diǎn)的直線的解析式;
(3)首先求得點(diǎn)D的坐標(biāo),將點(diǎn)O,E,D的坐標(biāo)代入二次函數(shù)的一般式,解方程組即可;
(4)求得拋物線的頂點(diǎn)坐標(biāo),再代入解析式,看是否左右相等即可.
解答:解:(1)設(shè)⊙F的半徑為r
連接DF,∴BA⊥DF
∵AD切⊙F于D點(diǎn)
∴AD2=AE•AO即22=1•(2r+1)
∴r=又Rt△ADF∽R(shí)t△AOB


∴AB=5,故BD=3;

(2)顯然A(4,0)、B(0,3)
故設(shè)解析式為y=kx+3
將(4,0)代入得AB解析式y(tǒng)=-x+3;

(3)過(guò)D作DH⊥AO于H,
∴DH=BO
∵△ABO∽△ADH
∴DH=
又∵DH∥BO
,即
∴OH=
∴D點(diǎn)坐標(biāo)為(
E點(diǎn)坐標(biāo)(3,0)
設(shè)經(jīng)過(guò)EDO的函數(shù)解析式為y=ax2+bx+c.


∴所求函數(shù)解析式為y=-+;

(4)(3)中的頂點(diǎn)為(,).
當(dāng)x=時(shí),代入y=-x+3=-×+3=
故(3)的頂點(diǎn)不在直線AB上.
點(diǎn)評(píng):此題考查了二次函數(shù)與圓的綜合知識(shí),解題時(shí)要注意圓的性質(zhì),待定系數(shù)法的應(yīng)用,特別是要注意數(shù)形結(jié)合思想與方程思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2004年湖南省岳陽(yáng)市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2004•岳陽(yáng))Rt△AOB中直角邊OA、OB分別在x軸、y軸的正半軸上,O為坐標(biāo)原點(diǎn),以F為圓心的圓與y軸、直線AB分別相切于O、D(如圖),若AD=2,AE=1.
(1)求BD的長(zhǎng)度;
(2)求經(jīng)過(guò)A、B兩點(diǎn)的直線的解析式;
(3)求經(jīng)過(guò)E、D、O三點(diǎn)的二次函數(shù)的解析式;
(4)判斷(3)中拋物線的頂點(diǎn)是否在直線AB上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年全國(guó)中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(04)(解析版) 題型:解答題

(2004•岳陽(yáng))如圖在△ABC中,已知∠B=45°,∠A=105°,AB=.求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年全國(guó)中考數(shù)學(xué)試題匯編《圖形的相似》(06)(解析版) 題型:解答題

(2004•岳陽(yáng))如圖,已知.求證:BD=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年全國(guó)中考數(shù)學(xué)試題匯編《圖形的相似》(04)(解析版) 題型:解答題

(2004•岳陽(yáng))如圖,⊙O1與⊙O2外切于P點(diǎn),過(guò)⊙O1上一點(diǎn)B作⊙O1的切線,交⊙O2于C、D,直線BP交⊙O2于點(diǎn)A.
(1)求證:∠CBP=∠ADP;
(2)求證:AD2+BC•BD=AB2;
(3)設(shè)⊙O2的面積為S2,⊙O1的面積為S1;且S2:S1=9:1,當(dāng)AD=,求BP的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案