(本題滿分10分)
如圖,將OA = 6,AB = 4的矩形OABC放置在平面直角坐標(biāo)系中,動(dòng)點(diǎn)M、N以每秒1個(gè)單位的速度分別從點(diǎn)A、C同時(shí)出發(fā),其中點(diǎn)M沿AO向終點(diǎn)O運(yùn)動(dòng),點(diǎn)N沿CB向終點(diǎn)B運(yùn)動(dòng),當(dāng)兩個(gè)動(dòng)點(diǎn)運(yùn)動(dòng)了t秒時(shí),過點(diǎn)N作NP⊥BC,交OB于點(diǎn)P,連接MP.
(1)點(diǎn)B的坐標(biāo)為 ;用含t的式子表示點(diǎn)P的坐標(biāo)為 ;(3分)
(2)記△OMP的面積為S,求S與t的函數(shù)關(guān)系式(0 < t < 6);并求t為何值時(shí),S有最大值?(4分)
(3)試探究:當(dāng)S有最大值時(shí),在y軸上是否存在點(diǎn)T,使直線MT把△ONC分割成三角形和四邊形兩部分,且三角形的面積是△ONC面積的?若存在,求出點(diǎn)T的坐標(biāo);若不存在,請(qǐng)說明理由.(3分)
(1)(6,4);()
(2)當(dāng)時(shí),S有最大值
(3)存在,在y軸上存在點(diǎn)T1(0,),T2(0,)符合條件
【解析】解:(1)(6,4);().(其中寫對(duì)B點(diǎn)得1分) 3分
(2)∵S△OMP =×OM×, 4分
∴S =×(6 -t)×=+2t.
=(0 < t <6). 6分
∴當(dāng)時(shí),S有最大值. 7分
(3)存在.
由(2)得:當(dāng)S有最大值時(shí),點(diǎn)M、N的坐標(biāo)分別為:M(3,0),N(3,4),
則直線ON的函數(shù)關(guān)系式為:.
設(shè)點(diǎn)T的坐標(biāo)為(0,b),則直線MT的函數(shù)關(guān)系式為:,
解方程組得
∴直線ON與MT的交點(diǎn)R的坐標(biāo)為.
∵S△OCN =×4×3=6,∴S△ORT = S△OCN =2. 8分
當(dāng)點(diǎn)T在點(diǎn)O、C之間時(shí),分割出的三角形是△OR1T1,如圖,作R1D1⊥y軸,D1為垂足,則S△OR1T1=••••RD1•OT =••b=2.
∴, b =.
∴b1 =,b2 =(不合題意,舍去)
此時(shí)點(diǎn)T1的坐標(biāo)為(0,). 9分
② 當(dāng)點(diǎn)T在OC的延長線上時(shí),分割出的三角形是△R2NE,如圖,設(shè)MT交CN于點(diǎn)E,由①得點(diǎn)E的橫坐標(biāo)為,作R2D2⊥CN交CN于點(diǎn)D2,則
S△R2NE=•EN•R2D2 =••=2.
∴,b=.
∴b1=,b2=(不合題意,舍去).
∴此時(shí)點(diǎn)T2的坐標(biāo)為(0,).
綜上所述,在y軸上存在點(diǎn)T1(0,),T2(0,)符合條件.…10分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012屆江蘇省鹽城市九年級(jí)下學(xué)期期中考試數(shù)學(xué)卷 題型:選擇題
(本題滿分10分)如圖,小明家在A處,門前有一口池塘,隔著池塘有一條公路l,AB是A到l的小路. 現(xiàn)新修一條路AC到公路l. 小明測(cè)量出∠ACD=30º,∠ABD=45º,BC=50m. 請(qǐng)你幫小明計(jì)算他家到公路l的距離AD的長度(精確到0.1m;參考數(shù)據(jù):,).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012屆江蘇省海陵區(qū)九年級(jí)第一學(xué)期期末考試數(shù)學(xué)卷 題型:解答題
(本題滿分10分)如圖,BD是直徑,過⊙O上一點(diǎn)A作⊙O切線交DB延長線于P,過B點(diǎn)作BC∥PA交⊙O于C,連接AB、AC ,
1.(1)求證:AB = AC
2.(2)若PA= 10 ,PB = 5 ,求⊙O半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012屆江蘇省九年級(jí)下學(xué)期3月考數(shù)學(xué)卷 題型:解答題
(本題滿分10分)如圖,已知二次函數(shù)的圖象的頂點(diǎn)為.二次函數(shù)的圖象與軸交于原點(diǎn)及另一點(diǎn),它的頂點(diǎn)在函數(shù)的圖象的對(duì)稱軸上.
(1)求點(diǎn)與點(diǎn)的坐標(biāo);
(2)當(dāng)四邊形為菱形時(shí),求函數(shù)的關(guān)系式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com