【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=﹣的圖象交于A、B兩點(diǎn),A的橫坐標(biāo)和點(diǎn)B的縱坐標(biāo)都是﹣2.求:

(1)一次函數(shù)的表達(dá)式;

(2)AOB的面積;

(3)根據(jù)圖象,當(dāng)x在什么范圍內(nèi)時(shí),一次函數(shù)的值大于反比例函數(shù)的值?

【答案】(1)y=﹣x+2;(2)6;(3)x﹣2和0x4.

【解析】

試題分析:(1)由反比例函數(shù)解析式可分別求得A、B兩點(diǎn)的坐標(biāo),再利用待定系數(shù)法可求得一次函數(shù)表達(dá)式;

(2)設(shè)直線一次函數(shù)與y軸交于C點(diǎn),可求得C點(diǎn)坐標(biāo),再利用三角形的面積公式計(jì)算即可;

(2)一次函數(shù)的值大于反比例函數(shù)的值時(shí)即一次函數(shù)的圖象在反比例函數(shù)圖象的上方,結(jié)合圖象可求得x的范圍.

解:

(1)反比例函數(shù)y=﹣的圖象交于A、B兩點(diǎn),且A的橫坐標(biāo)和點(diǎn)B的縱坐標(biāo)都是﹣2,

A點(diǎn)的縱坐標(biāo)為和B點(diǎn)的橫坐標(biāo)都為4,

A(﹣2,4),B(4,﹣2),

一次函數(shù)y=kx+b的圖象過(guò)A、B兩點(diǎn),

把A、B兩點(diǎn)坐標(biāo)代入可得,解得

一次函數(shù)表達(dá)式為y=﹣x+2;

(2)如圖,設(shè)一次函數(shù)與y軸交于點(diǎn)C,則C點(diǎn)坐標(biāo)為(0,2),

OC=2,

S△AOB=S△AOC+S△BOC=OC2+OC4=6;

(3)結(jié)合圖象可知一次函數(shù)的圖象在反比例函數(shù)圖象的上方時(shí),對(duì)應(yīng)的x的取值范圍為x﹣2和0x4,

一次函數(shù)的值大于反比例函數(shù)的值時(shí)對(duì)應(yīng)的x的取值范圍為x﹣2和0x4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】a,b,c是直角三角形的三條邊長(zhǎng),斜邊c上的高的長(zhǎng)是h,給出下列結(jié)論

a2,b2c2的長(zhǎng)為邊的三條線段能組成一個(gè)三角形

, 的長(zhǎng)為邊的三條線段能組成一個(gè)三角形

a+b,c+h,h的長(zhǎng)為邊的三條線段能組成直角三角形

, 的長(zhǎng)為邊的三條線段能組成直角三角形

其中所有正確結(jié)論的序號(hào)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把矩形紙片ABCD沿EF折疊,使點(diǎn)B落在邊AD上的點(diǎn)B′處,點(diǎn)A落在點(diǎn)A′處,已知AD=10,CD=4,B′D=2.

(1)求證:B′E=BF;

(2)求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解決問(wèn)題:

一輛貨車(chē)從超市出發(fā),向東走了3千米到達(dá)小彬家,繼續(xù)走2.5千米到達(dá)小穎家,然后向西走了10千米到達(dá)小明家,最后回到超市.

(1)以超市為原點(diǎn),以向東的方向?yàn)檎较,?/span>1個(gè)單位長(zhǎng)度表示1千米,在數(shù)軸上表示出小明家,小彬家,小穎家的位置.

(2)小明家距小彬家多遠(yuǎn)?

(3)貨車(chē)一共行駛了多少千米?

(4)貨車(chē)每千米耗油0.2升,這次共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小米是一個(gè)愛(ài)動(dòng)腦筋的孩子,他用如下方法作∠AOB的角平分線: 作法:如圖,

⑴在射線OA上任取一點(diǎn)C,過(guò)點(diǎn)C作CD∥OB;
⑵以點(diǎn)C為圓心,CO的長(zhǎng)為半徑作弧,交CD于點(diǎn)E;
⑶作射線OE.
所以射線OE就是∠AOB的角平分線.請(qǐng)回答:小米的作圖依據(jù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,BD平分∠ABC交AC于D,EF垂直平分BD,分別交AB,BC,BD于E,F(xiàn),G,連接DE,DF.
(1)求證:DE=DF;
(2)若∠ABC=30°,∠C=45°,DE=4,求CF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了響應(yīng)市委和市政府綠色環(huán)保,節(jié)能減排的號(hào)召,幸福商場(chǎng)用3300元購(gòu)進(jìn)甲、乙兩種節(jié)能燈共計(jì)100只,很快售完.這兩種節(jié)能燈的進(jìn)價(jià)、售價(jià)如下表:

進(jìn)價(jià)(元/只)

售價(jià)(元/只)

甲種節(jié)能燈

30

40

甲種節(jié)能燈

35

50

(1)求幸福商場(chǎng)甲、乙兩種節(jié)能燈各購(gòu)進(jìn)了多少只?

(2)全部售完100只節(jié)能燈后,商場(chǎng)共計(jì)獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,過(guò)點(diǎn)(x1 , 0),﹣3<x1<﹣2,對(duì)稱軸為直線x=﹣1.給出四個(gè)結(jié)論:①abc>0;②2a+b=0;③b2>4ac;④3b+2c>0,其中正確的結(jié)論有(
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,平行四邊形ABCD的對(duì)角線AC的垂直平分線與邊AD、BC分別相交于點(diǎn)E、F.

求證:四邊形AFCE是菱形.

查看答案和解析>>

同步練習(xí)冊(cè)答案