【題目】如圖,直線AB、CD相交于點(diǎn)O,OE平分∠BOD,OF平分∠COE.∠AOC=∠COB,則∠BOF=_____°.
【答案】30.
【解析】
根據(jù)對(duì)頂角相等求得∠BOD的度數(shù),然后根據(jù)角的平分線的定義求得∠EOD的度數(shù),則∠COE即可求得,再根據(jù)角平分線的定義求得∠EOF,最后根據(jù)∠BOF=∠EOF﹣∠BOE求解.
解:∵∠AOC=∠COB,∠AOB=180°,
∴∠AOC=180°×=80°,
∴∠BOD=∠AOC=80°,
又∵OE平分∠BOD,
∴∠DOE=∠BOD=×80°=40°.
∴∠COE=180°﹣∠DOE=180°﹣40°=140°,
∵OF平分∠COE,
∴∠EOF=∠COE=×140°=70°,
∴∠BOF=∠EOF﹣∠BOE=70°﹣40°=30°.
故答案是:30.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)初三(1)班共有40名同學(xué),在一次30秒跳繩測(cè)試中他們的成績(jī)統(tǒng)計(jì)如下表:
跳繩數(shù)/個(gè) | 81 | 85 | 90 | 93 | 95 | 98 | 100 |
人 數(shù) | 1 | 2 | 8 | 11 | 5 |
將這些數(shù)據(jù)按組距5(個(gè))分組,繪制成如圖的頻數(shù)分布直方圖(不完整).
(1)將表中空缺的數(shù)據(jù)填寫完整,并補(bǔ)全頻數(shù)分布直方圖;
(2)這個(gè)班同學(xué)這次跳繩成績(jī)的眾數(shù)是個(gè),中位數(shù)是個(gè);
(3)若跳滿90個(gè)可得滿分,學(xué)校初三年級(jí)共有720人,試估計(jì)該中學(xué)初三年級(jí)還有多少人跳繩不能得滿分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)為坐標(biāo)原點(diǎn),點(diǎn)分別在軸正半軸和軸正半軸上,且,點(diǎn)從原點(diǎn)出發(fā)以每秒個(gè)單位長(zhǎng)度的速度沿x軸正半軸方向運(yùn)動(dòng).
(1)求點(diǎn)的坐標(biāo).
(2)連接設(shè)三角形的面積為,點(diǎn)的運(yùn)動(dòng)時(shí)間為,請(qǐng)用含的式子表示并直接寫出的取值范圍.
(3)當(dāng)點(diǎn)在上運(yùn)動(dòng)時(shí),將線段沿軸正方向平移,使點(diǎn)與點(diǎn)重合,點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn),連接,將線段沿軸正方向平移,使點(diǎn)與點(diǎn)重合,點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn),取的中點(diǎn)是否存在的值,使三角形的面積等于三角形的面積?若存在,求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小明同學(xué)化簡(jiǎn)代數(shù)式a+2+ 的過程,請(qǐng)仔細(xì)閱讀并解答所提出的問題. a+2+ =2+a+ …第一步
=(2+a)(2﹣a)+a2…第二步
=2﹣a2+a2…第三步
=2…第四步
(1)小明的解法從第步開始出現(xiàn)錯(cuò)誤,正確的化簡(jiǎn)結(jié)果是;
(2)原代數(shù)式的值能等于2嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面內(nèi)有∠AOB=60°,∠AOC=40°,OD是∠AOB的平分線,OE是∠AOC的平分線,求∠DOE的度數(shù).(請(qǐng)作圖解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E是ABCD的邊CD的中點(diǎn),延長(zhǎng)AE交BC的延長(zhǎng)線于點(diǎn)F.
(1)求證:△ADE≌△FCE.
(2)若∠BAF=90°,BC=5,EF=3,求CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四張編號(hào)為A,B,C,D的卡片(除編號(hào)外,其余完全相同)的正面分別寫上如圖所示正整數(shù)后,背面朝上,洗勻放好,現(xiàn)從中隨機(jī)抽取一張(不放回),再?gòu)氖O碌目ㄆ须S機(jī)抽取一張.
(1)請(qǐng)用樹狀圖或列表的方法表示兩次抽取卡片的所有可能出現(xiàn)的結(jié)果(卡片用A,B,C,D表示);
(2)我們知道,滿足a2+b2=c2的三個(gè)正整數(shù)a,b,c成為勾股數(shù),求抽到的兩張卡片上的數(shù)都是勾股數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠AOB=∠BOC=∠COD,下列結(jié)論中錯(cuò)誤的是( 。
A. OB、OC分別平分、
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BN是等腰Rt△ABC的外角∠CBM內(nèi)部的一條射線,∠ABC=90°,AB=CB,點(diǎn)C關(guān)于BN的對(duì)稱點(diǎn)為D,連接AD,BD,CD,其中CD,AD分別交射線BN于點(diǎn)E,P.
(1)依題意補(bǔ)全圖形;
(2)若∠CBN=,求∠BDA的大。ㄓ煤的式子表示);
(3)用等式表示線段PB,PA與PE之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com