【題目】觀察一列數(shù):124、816、32、,發(fā)現(xiàn)從第二項(xiàng)開(kāi)始,每一項(xiàng)與前一項(xiàng)的比值都是同一個(gè)常數(shù),這個(gè)常數(shù)是_______;根據(jù)此規(guī)律,如果(為正整數(shù))表示這個(gè)數(shù)列的第項(xiàng),如果,,那么_____,_______;

如果欲求的值,

可令…………

將①式兩邊同乘以2,得

……………

由②減去①式,得.

(2)類比可得:__________.

(3)用由特殊到一般的方法知:若數(shù)列、、,從第二項(xiàng)開(kāi)始每一項(xiàng)與前一項(xiàng)之比的常數(shù)為,那么____,,______ (用含,,的代數(shù)式表示).

用含,,的代數(shù)式表示_________.

(4)一質(zhì)點(diǎn)從距離原點(diǎn)一個(gè)單位的A點(diǎn)向原點(diǎn)方向跳動(dòng),第一次跳到OA中點(diǎn)處,第二次從跳到的中點(diǎn)處,第三次從跳到的中點(diǎn)處,,如此不斷跳下去,則第50次跳動(dòng)后,該質(zhì)點(diǎn)跳動(dòng)的距離是多少?

【答案】(1) 這個(gè)常數(shù)是2;;(2) ;(3);;(4)該質(zhì)點(diǎn)跳動(dòng)的距離是.

【解析】

1)根據(jù)題意,可得在這個(gè)數(shù)列中,從第二項(xiàng)開(kāi)始,每一項(xiàng)與前一項(xiàng)之比是2;有第一個(gè)數(shù)為2,故可得a18,an的值;
2)根據(jù)題中的提示,可得S的值;
3)由(2)的方法,依次可以推出a1+a2+a3+…+an的值.
4)由已知條件求出首項(xiàng)和公比,再代入等比數(shù)列前n項(xiàng)和公式的答案.

(1) 這個(gè)常數(shù)是2,

(2) …………

將①式兩邊同乘以5,得

……………

由②減去①式,得.

.

故答案為:

(3);

,

,

由②減去①式,得.

.

(4)

,

.

答:該質(zhì)點(diǎn)跳動(dòng)的距離是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】發(fā)現(xiàn)與探索:你能求(x1)(x2019+x2018+x2017+……+x+1)的值嗎?遇到這樣的問(wèn)題,我們可以先思考一下,從簡(jiǎn)單的情形入手.先分別計(jì)算下列各式的值:

1)(x1)(x+1)=x21;

2)(x1)(x2+x+1)=x31;

3)(x1)(x3+x2+x+1)=x41

……

由此我們可以得到:(x1)(x2019+x2018+x2017+……+x+1)=   ;請(qǐng)你利用上面的結(jié)論,完成下面兩題的計(jì)算:

132019+32018+32017+……+3+1;

2)(﹣250+(﹣249+(﹣248+……+(﹣2).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】化歸與轉(zhuǎn)化的思想是指在研究解決數(shù)學(xué)問(wèn)題時(shí)采用某種手段將問(wèn)題通過(guò)變換使之轉(zhuǎn)化,進(jìn)而使問(wèn)題得到解決。

(1)我們知道可以得到。如果,求、的值.

(2)已知 試問(wèn)多項(xiàng)式a2+b2+c2abacbc的值是否與變量的取值有關(guān)?若有關(guān)請(qǐng)說(shuō)明理由;若無(wú)關(guān)請(qǐng)求出多項(xiàng)式的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,不添加任何輔助線,要使四邊形ABCD是正方形,則需要添加一個(gè)條件是 . (填一個(gè)即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,∠ADC的平分線交AB于點(diǎn)E,∠ABC的平分線交CD于點(diǎn)F,求證:四邊形EBFD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠180°,∠2100°,∠C=∠D

1)判斷ACDF的位置關(guān)系,并說(shuō)明理由;

2)若∠C比∠A20°,求∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=x+3與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,拋物線y=﹣x2+bx+c經(jīng)過(guò)A、B兩點(diǎn).
(1)求拋物線的解析式;
(2)點(diǎn)P為拋物線在第二象限內(nèi)一點(diǎn),過(guò)點(diǎn)P作x軸的垂線,垂足為點(diǎn)M,與直線AB交于點(diǎn)C,過(guò)點(diǎn)P作x軸的平行線交拋物線于點(diǎn)Q,過(guò)點(diǎn)Q作x軸的垂線,垂足為點(diǎn)N,若點(diǎn)P在點(diǎn)Q左邊,設(shè)點(diǎn)P的橫坐標(biāo)為m.
①當(dāng)矩形PQNM的周長(zhǎng)最大時(shí),求△ACM的面積;
②在①的條件下,當(dāng)矩形PMNQ的周長(zhǎng)最大時(shí),過(guò)直線AC上一點(diǎn)G作y軸的平行線交拋物線一點(diǎn)F,是否存在點(diǎn)F,使得以點(diǎn)P、C、G、F為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的一條邊的長(zhǎng)為5,另兩邊的長(zhǎng)是關(guān)于的一元二次方程的兩個(gè)實(shí)數(shù)根.

1)求證:無(wú)論為何值,方程總有兩個(gè)不相等的實(shí)數(shù)根;

2)當(dāng)為何值時(shí),為直角三角形,并求出的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=ax2+bx+c(a≠0)與x軸的兩個(gè)交點(diǎn)的坐標(biāo)分別是(-3,0),(2,0),則方程ax2+bx+c=0(a≠0)的解是.

查看答案和解析>>

同步練習(xí)冊(cè)答案