【題目】322日的“世界水資源保護(hù)日”當(dāng)天,我縣某校開展“節(jié)約用水,從你我做起”的宣傳活動(dòng),小明利用課余時(shí)間對他所居住小區(qū)100戶居民2月份的用水量進(jìn)行調(diào)查,情況如下表

用水量(m3)

9

10

11

12

戶數(shù)(戶)

20

40

30

10

請根據(jù)表中的數(shù)據(jù),求這100戶居民2月份用水量的眾數(shù)、中位數(shù)和平均數(shù).

【答案】10,10,10.3.

【解析】

眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù);將一組數(shù)據(jù)按照從小到大(或從大到。┑捻樞蚺帕校绻麛(shù)據(jù)的個(gè)數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù),根據(jù)定義可求解;根據(jù)加權(quán)平均數(shù)的定義求其平均數(shù).

解:數(shù)據(jù)10出現(xiàn)次數(shù)最多,所以用水量的眾數(shù)是10m3);
位置處于中間的數(shù)是第50個(gè)和第51個(gè),都是10,故中位數(shù)是10 m3;

用水量的平均數(shù)=9×20+10×40+11×30+12×10=10.3m3.

答:這100戶居民2月份用水量的眾數(shù)、中位數(shù)和平均數(shù)分別為10 m3,10 m3,10.3 m3.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國古代稱直角三角形為“勾股形”,并且直角邊中較短邊為勾,另一直角邊為股,斜邊為弦.如圖1所示,數(shù)學(xué)家劉徽(約公元225年—公元295年)將勾股形分割成一個(gè)正方形和兩對全等的直角三角形,后人借助這種分割方法所得的圖形證明了勾股定理.如圖2所示的長方形,是由兩個(gè)完全相同的“勾股形”拼接而成,若,,則長方形的面積為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長都是1, 的頂點(diǎn)都在正方形網(wǎng)格的格點(diǎn)(網(wǎng)格線的交點(diǎn)).

(1)請?jiān)趫D中的網(wǎng)格平面內(nèi)畫出平面直角坐標(biāo)系,使點(diǎn)坐標(biāo)為(7,6),點(diǎn)坐標(biāo)為(2,1);

(2)(1)的條件下,

①請畫出點(diǎn)關(guān)于軸的對稱點(diǎn),并寫出點(diǎn)的坐標(biāo);

②點(diǎn)是邊上的一個(gè)動(dòng)點(diǎn),連接,則周長的最小值為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,分別以的直角邊AC及斜邊AB向外作等邊,等邊.已知∠BAC30°,EFAB,垂足為F,連結(jié)DF.試說明ACEF;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】自古以來,人類對于蜜蜂的勤勞以及蜂巢的巧妙精準(zhǔn)無不贊揚(yáng)有加.從生物學(xué)鼻祖亞里士多德,到數(shù)學(xué)家帕普斯,以及近代的生物學(xué)家達(dá)爾文都曾留下了贊美的詩句.工蜂分泌蜂蠟筑成蜂窩,作為蜂王產(chǎn)卵、工蜂育幼以及存放蜂蜜、花粉的貯藏室.從正面來看,蜂巢是由許多正六邊形連結(jié)而成,正六邊形是能夠不重疊地鋪滿一個(gè)平面的三種正多邊形之一,另外兩種分別是正方形和正三角形.

1)一根長12的鐵絲分別圍成正三角形,正方形,正六邊形,請同學(xué)們直接寫出圍成圖形的面積: , , ;

2)在(1)的條件下,比較圍成圖形面積的大;

3)通過以上計(jì)算,當(dāng)面積一定時(shí),耗材最少的圖形是 (填:正三角形、正方形、正六邊形).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直線l上依次擺放著七個(gè)正方形,已知斜放置的三個(gè)正方形的面積分別為1,1.21,1.44,正放置的四個(gè)正方形的面積為S1、S2、S3、S4,則S1+2S2+2S3+S4_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】義安中學(xué)工會(huì)三八婦女節(jié)共籌集會(huì)費(fèi)1800元,工會(huì)決定拿出不少于270元,但不超過300元的資金為優(yōu)秀女職工購買紀(jì)念品,其余的錢用于給50位女職工每人買一瓶洗發(fā)液或護(hù)發(fā)素,已知每瓶洗發(fā)液比每瓶護(hù)發(fā)素貴9元,用200元恰好可以買到2瓶洗發(fā)液和5瓶護(hù)發(fā)素.

(1)求每瓶洗發(fā)液和每瓶護(hù)發(fā)素價(jià)格各是多少元?

(2)有幾種購買洗發(fā)液和護(hù)發(fā)素的方案?哪種方案用于為優(yōu)秀女職工購買紀(jì)念品的資金更充足?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,∠BAD=120°,B=D=90°,在BC,CD上分別找一點(diǎn)M,N,使AMN周長最小時(shí),則∠AMN+ANM的度數(shù)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.

(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1

(2)將△ABC向右平移6個(gè)單位,作出平移后的△A2B2C2,并寫出△A2B2C2各頂點(diǎn)的坐標(biāo);

(3)觀察△A1B1C1和△A2B2C2,它們是否關(guān)于某條直線對稱?若是,請?jiān)趫D上畫出這條對稱軸.

查看答案和解析>>

同步練習(xí)冊答案