【題目】如圖為二次函數(shù)yax2+bx+c的圖象,在下列說法中①ac0;②方程ax2+bx+c0的根是x1=﹣1,x23;③a+b+c0;④當(dāng)x1時(shí),yx的增大而增大,正確的是( )

A. ①③B. ②④C. ①②④D. ②③④

【答案】D

【解析】

①依據(jù)拋物線開口方向可確定a的符號、與y軸交點(diǎn)確定c的符號進(jìn)而確定ac的符號;②由拋物線與x軸交點(diǎn)的坐標(biāo)可得出一元二次方程ax2+bx+c=0的根;③由當(dāng)x=1時(shí)y0,可得出a+b+c0;④觀察函數(shù)圖象并計(jì)算出對稱軸的位置,即可得出當(dāng)x1時(shí),yx的增大而增大.

由圖可知:,,

,故錯(cuò)誤;

由拋物線與軸的交點(diǎn)的橫坐標(biāo)為

方程的根是,,故正確;

由圖可知:時(shí),

,故正確;

由圖象可知:對稱軸為:,

時(shí),隨著的增大而增大,故正確;

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖像與反比例函數(shù)的圖像交于第一、三象限內(nèi)的,兩點(diǎn),與軸交于點(diǎn),過點(diǎn)軸,垂足為點(diǎn),,點(diǎn)的縱坐標(biāo)為

1)求點(diǎn)的坐標(biāo);

2)求該反比例函數(shù)和一次函數(shù)的解析式;

3)連接,求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸于、兩點(diǎn),經(jīng)過點(diǎn),交軸于點(diǎn)

1)求拋物線的解析式及點(diǎn)的坐標(biāo);

2)求的面積;

3)若點(diǎn)在直線上,點(diǎn)在平面上,是否存在這樣的點(diǎn),使得以點(diǎn)為頂點(diǎn)的四邊形為菱形?若存在,請直接寫出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)的圖象經(jīng)過點(diǎn),射線與反比例函數(shù)的圖象的另一個(gè)交點(diǎn)為,射線軸交于點(diǎn),軸交于點(diǎn)軸, 垂足為

求反比例函數(shù)的解析式;

的長

軸上是否存在點(diǎn),使得相似,若存在,請求出滿足條件點(diǎn)的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半徑為中,弦,所對的圓心角分別是,若,,則弦的長等于( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半徑為2,圓心角為60°,則圖中陰影部分的面積是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從甲、乙兩臺包裝機(jī)包裝的質(zhì)量為300g的袋裝食品中各抽取10袋,測得其實(shí)際質(zhì)量如下(單位:g

甲:301,300,305,302303,302,300,300298,299

乙:305302,300300,300,300,298,299301,305

1)分別計(jì)算甲、乙這兩個(gè)樣本的平均數(shù)和方差;

2)比較這兩臺包裝機(jī)包裝質(zhì)量的穩(wěn)定性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和小亮用三枚質(zhì)地均勻的硬幣做游戲,游戲規(guī)則是:同時(shí)拋擲這三枚硬幣,出現(xiàn)兩枚正面向上,一枚正面向下,則小明贏;出現(xiàn)兩枚正面向下,一枚正面向上,則小亮贏.這個(gè)游戲規(guī)則對雙方公平嗎?請你用樹狀圖或列表法說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,點(diǎn)邊上的一點(diǎn),且,,過點(diǎn)于點(diǎn),若,則的面積為(

A.B.4C.D.3

查看答案和解析>>

同步練習(xí)冊答案