【題目】已知△ABC是等腰三角形,AB=AC.
(1)特殊情形:如圖1,當(dāng)DE∥BC時(shí),有DB EC.(填“>”,“<”或“=”)
(2)發(fā)現(xiàn)探究:若將圖1中的△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α(0°<α<180°)到圖2位置,則(1)中的結(jié)論還成立嗎?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說(shuō)明理由.
(3)拓展運(yùn)用:如圖3,P是等腰直角三角形ABC內(nèi)一點(diǎn),∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度數(shù).
【答案】(1)=;(2)成立;(3)∠BPC =135°.
【解析】試題分析:(1)由DE∥BC,得到,結(jié)合AB=AC,得到DB=EC;
(2)由旋轉(zhuǎn)得到的結(jié)論判斷出△DAB≌△EAC,得到DB=CE;
(3)由旋轉(zhuǎn)構(gòu)造出△CPB≌△CEA,再用勾股定理計(jì)算出PE,然后用勾股定理逆定理判斷出△PEA是直角三角形,在簡(jiǎn)單計(jì)算即可.
試題解析:(1)∵DE∥BC,
∴,
∵AB=AC,
∴DB=EC,
故答案為=,
(2)成立.
證明:由①易知AD=AE,
∴由旋轉(zhuǎn)性質(zhì)可知∠DAB=∠EAC,
又∵AD=AE,AB=AC
∴△DAB≌△EAC,
∴DB=CE,
(3)如圖,
將△CPB繞點(diǎn)C旋轉(zhuǎn)90°得△CEA,連接PE,
∴△CPB≌△CEA,
∴CE=CP=2,AE=BP=1,∠PCE=90°,
∴∠CEP=∠CPE=45°,
在Rt△PCE中,由勾股定理可得,PE=,
在△PEA中,PE2=()2=8,AE2=12=1,PA2=32=9,
∵PE2+AE2=AP2,
∴△PEA是直角三角形
∴∠PEA=90°,
∴∠CEA=135°,
又∵△CPB≌△CEA
∴∠BPC=∠CEA=135°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將點(diǎn)A(-2,3)平移到點(diǎn)B(1,-2)處,正確的移法是( )
A. 向右平移3個(gè)單位長(zhǎng)度,向上平移5個(gè)單位長(zhǎng)度
B. 向左平移3個(gè)單位長(zhǎng)度,向下平移5個(gè)單位長(zhǎng)度
C. 向右平移3個(gè)單位長(zhǎng)度,向下平移5個(gè)單位長(zhǎng)度
D. 向左平移3個(gè)單位長(zhǎng)度,向上平移5個(gè)單位長(zhǎng)度
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1是一種可折疊臺(tái)燈,它放置在水平桌面上,將其抽象成圖2,其中點(diǎn)B,E,D均為可轉(zhuǎn)動(dòng)點(diǎn).現(xiàn)測(cè)得AB=BE=ED=CD=15cm,經(jīng)多次調(diào)試發(fā)現(xiàn)當(dāng)點(diǎn)B,E所在直線垂直經(jīng)過(guò)CD的中點(diǎn)F時(shí)(如圖3所示)放置較平穩(wěn).
(1)求平穩(wěn)放置時(shí)燈座DC與燈桿DE的夾角的大;
(2)為保護(hù)視力,寫(xiě)字時(shí)眼睛離桌面的距離應(yīng)保持在30cm,為防止臺(tái)燈刺眼,點(diǎn)A離桌面的距離應(yīng)不超過(guò)30cm,求臺(tái)燈平穩(wěn)放置時(shí)∠ABE的最大值.(結(jié)果精確到0.01°,參考數(shù)據(jù): ≈1.732,sin7.70°≈0.134,cos82.30°≈0.134,可使用科學(xué)計(jì)算器)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)在一次九年級(jí)數(shù)學(xué)做了檢測(cè)中,有一道滿分8分的解答題,按評(píng)分標(biāo)準(zhǔn),所有考生的得分只有四種:0分,3分,5分,8分.老師為了了解學(xué)生的得分情況與題目的難易情況,從全區(qū)4500名考生的試卷中隨機(jī)抽取一部分,通過(guò)分析與整理,繪制了如下兩幅圖不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)以上信息解答下列問(wèn)題:
(1)填空:a= ,b= ,并把條形統(tǒng)計(jì)圖補(bǔ)全;
(2)請(qǐng)估計(jì)該地區(qū)此題得滿分(即8分)的學(xué)生人數(shù);
(3)已知難度系數(shù)的計(jì)算公式為L=,其中L為難度系數(shù),X為樣本平均得分,W為試題滿分值.一般來(lái)說(shuō),根據(jù)試題的難度系數(shù)可將試題分為以下三類:當(dāng)0<L≤0.4時(shí),此題為難題;當(dāng)0.4<L≤0.7時(shí),此題為中等難度試題;當(dāng)0.7<L<1時(shí),此題為容易題.試問(wèn)此題對(duì)于該地區(qū)的九年級(jí)學(xué)生來(lái)說(shuō)屬于哪一類?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A、B兩地相距40km,甲、乙兩人沿同一公路從A地出發(fā)到B地,甲騎摩托車,乙騎自行車,圖中CD、OE分別表示甲、乙離開(kāi)A地的路程y(km)與時(shí)間x(h)的函數(shù)關(guān)系的圖象,結(jié)合圖象解答下列問(wèn)題.
(1)甲比乙晚出發(fā)小時(shí),乙的速度是km/h;
(2)在甲出發(fā)后幾小時(shí),兩人相遇?
(3)甲到達(dá)B地后,原地休息0.5小時(shí),從B地以原來(lái)的速度和路線返回A地,求甲在返回過(guò)程中與乙相距10km時(shí),對(duì)應(yīng)x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+與x軸交于A(-3,0),B(1,0)兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D與點(diǎn)C關(guān)于拋物線的對(duì)稱軸對(duì)稱.
(1)求拋物線的解析式,并直接寫(xiě)出點(diǎn)D的坐標(biāo);
(2)如圖1,點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿A→B勻速運(yùn)動(dòng),到達(dá)點(diǎn)B時(shí)停止運(yùn)動(dòng).以AP為邊作等邊△APQ(點(diǎn)Q在x軸上方).設(shè)點(diǎn)P在運(yùn)動(dòng)過(guò)程中,△APQ與四邊形AOCD重疊部分的面積為S,點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,求S與t之間的函數(shù)關(guān)系式;
(3)如圖2,連接AC,在第二象限內(nèi)存在點(diǎn)M,使得以M、O、A為頂點(diǎn)的三角形與△AOC相似.請(qǐng)直接寫(xiě)出所有符合條件的點(diǎn)M坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在函數(shù)y=x-1的圖象上的點(diǎn)是()
A.(0,-1)B.(0,0)C.(0,1)D.(-1,0)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com