27、將圖1,將一張直角三角形紙片ABC折疊,使點(diǎn)A與點(diǎn)C重合,這時(shí)DE為折痕,△CBE為等腰三角形;再繼續(xù)將紙片沿△CBE的對(duì)稱軸EF折疊,這時(shí)得到了兩個(gè)完全重合的矩形(其中一個(gè)是原直角三角形的內(nèi)接矩形,另一個(gè)是拼合成的無(wú)縫隙、無(wú)重疊的矩形),我們稱這樣兩個(gè)矩形為“疊加矩形”.

(1)如圖2,正方形網(wǎng)格中的△ABC能折疊成“疊加矩形”嗎?如果能,請(qǐng)?jiān)趫D2中畫(huà)出折痕;
(2)如圖3,在正方形網(wǎng)格中,以給定的BC為一邊,畫(huà)出一個(gè)斜三角形ABC,使其頂點(diǎn)A在格點(diǎn)上,且△ABC折成的“疊加矩形”為正方形;
(3)如果一個(gè)三角形所折成的“疊加矩形”為正方形,那么它必須滿足的條件是
三角形一邊長(zhǎng)與該邊上的高相等
;
(4)如果一個(gè)四邊形一定能折成“疊加矩形”,那么它必須滿足的條件是
對(duì)角線互相垂直
分析:(1)圖2中將三角形的三個(gè)角分別向三角形內(nèi)部進(jìn)行折疊即可;
(2)圖3中只要使三角形一邊上的高等于該邊長(zhǎng)即可;
(3)利用折疊后的兩個(gè)重合的正方形可知,三角形一邊長(zhǎng)的一半和這一邊上的高的一半都等于正方形的邊長(zhǎng),所以三角形的一邊和這邊上的高應(yīng)該相等;
(4)如果一個(gè)四邊形能折疊成疊加矩形,可以將四邊形的四個(gè)角分別向四邊形內(nèi)部折疊即可得到該結(jié)果,折痕應(yīng)經(jīng)過(guò)四邊中點(diǎn),而連接四邊形各邊中點(diǎn)得到矩形的話,該四邊形的對(duì)角線應(yīng)互相垂直.
解答:解:(1)(1分)
(2)分)
(3)三角形的一邊長(zhǎng)與該邊上的高相等;(3分)
(4)對(duì)角線互相垂直.(注:回答菱形、正方形不給分)(5分)
點(diǎn)評(píng):這是道操作題,一方面考查了學(xué)生的動(dòng)手操作能力,另一方面考查了學(xué)生的空間想像能力,重視知識(shí)的發(fā)生過(guò)程,讓學(xué)生體驗(yàn)學(xué)習(xí)的過(guò)程.在操作的過(guò)程中,應(yīng)善于分析圖形,結(jié)合中點(diǎn)即可解決問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、如圖所示,有兩種形狀不同的直角三角形紙片各兩塊,其中一種紙片的兩條直角邊長(zhǎng)分別為1和2,另一種紙片的兩條直角邊長(zhǎng)都為2.圖a、圖b、圖c是三張形狀、大小完全相同的方格紙,方格紙中的每個(gè)小正方形的邊長(zhǎng)均為1.請(qǐng)用三種方法將圖中所給四塊直角三角形紙片拼成平行四邊形(非矩形),每種方法要把圖中所給的四塊直角三角形紙片全部用上,互不重疊且不留空隙,三種方法所拼得的平行四邊形(非矩形)的周長(zhǎng)互不相等,并把你所拼得的圖形按實(shí)際大小畫(huà)在圖a、圖b、圖c的方格紙上.
要求:(1)所畫(huà)圖形各頂點(diǎn)必須與方格紙中的小正方形頂點(diǎn)重合;
(2)畫(huà)圖時(shí),要保留四塊直角三角形紙片的拼接痕跡.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、將一張正方形紙片ABCD按下圖所示的方式連續(xù)折疊三次,折疊后再按圖中所示沿MN剪裁,則可得到( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

28、小麗剪了一些直角三角形紙片,她取出其中的幾張進(jìn)行了如下的操作:
操作一:如圖1,將Rt△ABC沿某條直線折疊,使斜邊的兩個(gè)端點(diǎn)A與B重合,折痕為DE.
(1)如果AC=6cm,BC=8cm,試求△ACD的周長(zhǎng).
(2)如果∠CAD:∠BAD=4:7,求∠B的度數(shù).
操作二:如圖2,小麗拿出另一張Rt△ABC紙片,將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,已知兩直角邊AC=4cm,BC=8cm,你能求出CD的長(zhǎng)嗎?
操作三:如圖3,小麗又拿出另一張Rt△ABC紙片,將紙片折疊,折痕CD⊥AB.你能證明:BC2+AD2=AC2+BD2嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、將一張正方形的紙片按下圖所示的方式三次折疊,折疊后再按圖所示沿MN裁剪,則得到的圖形是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

16、將一張正方形的紙片按如圖所示的方式三次折疊,折疊后再按圖所示沿折痕MN裁剪,則可得(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案