已知二次函數(shù)y=ax2+bx+c的圖象如圖:
①對稱軸方程是:______;
②點A(x1,y1),B(x2,y2)是圖象上的兩個點,且x1<x2<1,則y1______y2
③求函數(shù)解析式.

【答案】分析:①通過拋物線與x軸的交點坐標可知其中點的橫坐標即為對稱軸x=;
②根據(jù)函數(shù)的單調(diào)性可知:當x1<x2<1時,y1>y2
③根據(jù)(-1,0),(4,0),(0,-4)三點的坐標,可用待定系數(shù)法求出拋物線的解析式.
解答:解:①由于拋物線與x軸的交點坐標為(-1,0),(4,0),
∴拋物線的對稱軸為
②由①知:拋物線的對稱軸為x=>1,且拋物線的開口向上,
因此當x1<x2<1時,y1>y2
③由已知設二次函數(shù)的解析式為:y=a(x+1)(x-4);
因為點(0,4)在拋物線上,
所以-4=-4a,a=1;
∴二次函數(shù)的解析式為:y=(x+1)(x-4)=x2-3x-4.
點評:主要考查了用待定系數(shù)法求函數(shù)解析式的方法以及二次函數(shù)的圖象性質(zhì).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

21、已知二次函數(shù)y=a(x+1)2+c的圖象如圖所示,則函數(shù)y=ax+c的圖象只可能是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知二次函數(shù)y=ax+bx+c的圖象與x軸交于點A.B,與y軸交于點 C.

(1)寫出A. B.C三點的坐標;(2)求出二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2013-2014學年廣東省廣州市海珠區(qū)九年級上學期期末數(shù)學試卷(解析版) 題型:選擇題

已知二次函數(shù)y=ax²+bx+c(a≠0)的圖像如圖所示,則下列結論中正確的是(   )

A.a>0             B.3是方程ax²+bx+c=0的一個根

C.a+b+c=0          D.當x<1時,y隨x的增大而減小

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

已知二次函數(shù)y=ax+bx+c(a≠0,a,b,c為常數(shù)),對稱軸為直線x=1,它的部分自變量與函數(shù)值y的對應值如下表,寫出方程ax2+bx+c=0的一個正數(shù)解的近似值________(精確到0.1).
x-0.1-0.2-0.3-0.4
y=ax2+bx+c-0.58-0.120.380.92

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知二次函數(shù)y=ax²+bx+c(c≠0)的圖像如圖4所示,下列說法錯誤的是:

(A)圖像關于直線x=1對稱

(B)函數(shù)y=ax²+bx+c(c ≠0)的最小值是 -4

(C)-1和3是方程ax²+bx+c=0(c ≠0)的兩個根

(D)當x<1時,y隨x的增大而增大

查看答案和解析>>

同步練習冊答案