【題目】如圖,四邊形ABCD和四邊形DEFG都是正方形,點E,G分別在AD,CD上,連接AF,BF,CF.

(1)求證:AF=CF;

(2)若∠BAF=35°,求∠BFC的度數(shù).

【答案】(1)見解析;(2)∠BFC=100°

【解析】試題分析:(1)利用正方形的性質結合全等三角形的判定與性質得出△AFE≌△CFG進而得出AF=CF;
(2)利用正方形的對角線平分對角進而得出答案.

試題解析:1)證明:∵四邊形ABCD和四邊形DEFG都是正方形,
AD=CD,ED=GDFE=FG
AD-ED=CD-GD
AE=CG
在△AFE和△CFG
,

∴△AFE≌△CFG(SAS),
∴AF=CF;
(2)解:由(1)得△AEF≌△CGF,
∴∠AFE=∠CFG.
又∵AB∥EF,∠BAF=35°,
∴∠AFE=∠CFG=∠BAF=35°.
連接DF,
∵四邊形DEFG是正方形,
∴∠DFG=45°.
∴∠BFC=180°-∠CFG-∠GFD=180°-35°-45°=100°.
即∠BFC=100°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,數(shù)軸上有點a,b,c三點

(1)用“<”將a,b,c連接起來.

(2)b﹣a   1(填“<”“>”,“=”)

(3)化簡|c﹣b|﹣|c﹣a+1|+|a﹣1|

(4)用含a,b的式子表示下列的最小值:

①|x﹣a|+|x﹣b|的最小值為   

②|x﹣a|+|x﹣b|+|x+1|的最小值為   ;

③|x﹣a|+|x﹣b|+|x﹣c|的最小值為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,OE,OD分別平分∠AOC和∠BOC,

(1)如果∠AOB=90°,BOC=38°,求∠DOE的度數(shù);

(2)如果∠AOB=α,BOC=β(α、β均為銳角,αβ),其他條件不變,求∠DOE;

(3)從(1)、(2)的結果中,你發(fā)現(xiàn)了什么規(guī)律,請寫出來.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AC=BC,∠ACB=90°,⊙O(圓心O在△ABC內部)經過B、C兩點,交AB于點E,過點E作⊙O的切線交AC于點F.延長CO交AB于點G,作ED∥AC交CG于點D

(1)求證:四邊形CDEF是平行四邊形;
(2)若BC=3,tan∠DEF=2,求BG的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為創(chuàng)建大數(shù)據(jù)應用示范城市,我市某機構針對市民最關心的四類生活信息進行了民意調查(被調查者每人限選一項),下面是部分四類生活信息關注度統(tǒng)計圖表,請根據(jù)圖中提供的信息解答下列問題:

(1)本次參與調查的人數(shù)有______ 人;

(2)關注城市醫(yī)療信息的有______ 人,并補全條形統(tǒng)計圖;

(3)扇形統(tǒng)計圖中,D部分的圓心角是______度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是某商品的標志圖案,AC與BD是⊙O的兩條直徑,首尾順次連接點A,B,C,D,得到四邊形ABCD.若AC=10cm,∠BAC=36°,則圖中陰影部分的面積為(
A.5πcm2
B.10πcm2
C.15πcm2
D.20πcm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平行四邊形ABCD中,∠BAD的平分線交線段BC于點E,交線段DC的延長線于點F,以EC、CF為鄰邊作平行四邊形ECFG

(1)如圖1,證明平行四邊形ECFG為菱形;

(2)如圖2,若∠ABC=90°,MEF的中點,求∠BDM的度數(shù);

(3)如圖3,若∠ABC=120°,請直接寫出∠BDG的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】水果市場將120噸水果運往各地商家,現(xiàn)有甲、乙、丙三種車型供選擇,每輛車的運載能力和運費如下表所示:(假設每輛車均滿載)

車型

汽車運載量(噸/輛)

5

8

10

汽車運費(元/輛)

400

500

600

(1)若全部水果都用甲、乙兩種車型來運送,需運費8200元,問分別需甲、乙兩種車型各幾輛?

(2)為了節(jié)約運費,市場可以調用甲、乙、丙三種車型參與運送(每種車型至少1輛),已知它們的總輛數(shù)為16輛,你能通過列方程組的方法分別求出幾種車型的輛數(shù)嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校八年級全體320名學生在電腦培訓前后各參加了一次水平相同的考試,考分都以同一標準劃分成不合格合格、優(yōu)秀三個等級.為了了解電腦培訓的效果,用抽簽方式得到其中32名學生的兩次考試考分等級,所繪制的統(tǒng)計圖如圖所示.試結合圖示信息回答下列問題:

(1)這32名學生培訓前考分的中位數(shù)所在的等級是 ,培訓后考分的中位數(shù)所在的等級是

(2)這32名學生經過培訓,考分等級不合格 的百分比由 下降到

(3)估計該校整個八年級中,培訓后考分等級為合格優(yōu)秀的學生共有 名.

(4)你認為上述估計合理嗎:理由是什么?

答: ,理由:

查看答案和解析>>

同步練習冊答案