如圖,要設(shè)計(jì)一個(gè)等腰梯形的花壇,花壇上底長(zhǎng)120米,下底長(zhǎng)180米,上下底相距80米,在兩腰中點(diǎn)連線(虛線)處有一條橫向甬道,上下底之間有兩條縱向甬道,各甬道的寬度相等.設(shè)甬道的寬為x米.
(1)用含x的式子表示橫向甬道的面積;
(2)根據(jù)設(shè)計(jì)的要求,甬道的寬不能超過(guò)6米.如果修建甬道的總費(fèi)用(萬(wàn)元)與甬道的寬度成正比例關(guān)系,比例系數(shù)是5.7,花壇其余部分的綠化費(fèi)用為每平方米0.02萬(wàn)元,那么當(dāng)甬道的寬度為多少米時(shí),所建花壇的總費(fèi)用為239萬(wàn)元?

【答案】分析:(1)根據(jù)題意得出橫向甬道的面積為(120+180)•x整理即可;
(2)花壇總費(fèi)用y=甬道總費(fèi)用+綠化總費(fèi)用:239=5.7x+(12,000-S)×0.02,即可求出.
解答:解:(1)中間橫道的面積=(120+180)•x=150x,
(2)甬道總面積為150x+160x-2x2=310x-2x2,
綠化總面積為12000-S 花壇總費(fèi)用y=甬道總費(fèi)用+綠化總費(fèi)用:
239=5.7x+(12000-S)×0.02,
239=5.7x-0.02S+240,
239=5.7x-0.02(310x-2x2)+240,
239=0.04x2-0.5x+240,
0.04x2-0.5x+1=0,
4x2-50x+100=0,
x1=2.5,x2=10(不合題意舍去),
解得:x=2.5,
當(dāng)x=2.5時(shí),所建花壇的總費(fèi)用為239萬(wàn)元.
點(diǎn)評(píng):此題主要考查了一元二次方程的應(yīng)用,根據(jù)題意得出239=5.7x-0.02(310x-2x2)+240,是解決問(wèn)題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

25、如圖,要設(shè)計(jì)一個(gè)等腰梯形的花壇,花壇上底長(zhǎng)120米,下底長(zhǎng)180米,上下底相距80米,在兩腰中點(diǎn)連線(虛線)處有一條橫向甬道,上下底之間有兩條縱向甬道,各甬道的寬度相等.設(shè)甬道的寬為x米.
(1)用含x的式子表示橫向甬道的面積;
(2)根據(jù)設(shè)計(jì)的要求,甬道的寬不能超過(guò)6米.如果修建甬道的總費(fèi)用(萬(wàn)元)與甬道的寬度成正比例關(guān)系,比例系數(shù)是5.7,花壇其余部分的綠化費(fèi)用為每平方米0.02萬(wàn)元,那么當(dāng)甬道的寬度為多少米時(shí),所建花壇的總費(fèi)用為239萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,要設(shè)計(jì)一個(gè)等腰梯形的花壇,花壇上底長(zhǎng)240m,下底長(zhǎng)360m,上下底相距80m,在兩腰中精英家教網(wǎng)點(diǎn)連線(虛線)處有一條橫向梯形通道,上下底之間有兩條縱向矩形通道,橫、縱通道的寬度分別為x(m)、2x(m).
(1)當(dāng)三條通道的面積是梯形面積的
18
時(shí),求每條縱向通道的寬;
(2)根據(jù)設(shè)計(jì)的要求,橫向通道的寬不能超過(guò)6m.如果修建通道的總費(fèi)用為11.4x萬(wàn)元,花壇其余部分的綠化費(fèi)用為每平方米0.02萬(wàn)元,那么當(dāng)橫向通道的寬度為多少m時(shí),所建花壇的總費(fèi)用最少?最少費(fèi)用是多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•廣西模擬)如圖,要設(shè)計(jì)一個(gè)等腰梯形的花壇,花壇上底120米,下底180米,上下底相距80米,在兩腰中點(diǎn)連線(虛線)處有一條橫向甬道,上下底之間有兩條縱向甬道,各甬道的寬度相等.設(shè)甬道的寬為x米.
(1)用含x的式子表示橫向甬道的面積;
(2)當(dāng)三條甬道的面積是梯形面積的八分之一時(shí),求甬道的寬;
(3)根據(jù)設(shè)計(jì)的要求,甬道的寬不能超過(guò)6米.如果修建甬道的總費(fèi)用(萬(wàn)元)與甬道的寬度成正比例關(guān)系,比例系數(shù)是5.7,花壇其余部分的綠化費(fèi)用為每平方米0.02萬(wàn)元,那么當(dāng)甬道的寬度為多少米時(shí),所建花壇的總費(fèi)用最少?最少費(fèi)用是多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•錦江區(qū)模擬)如圖,要設(shè)計(jì)一個(gè)等腰梯形的花壇,花壇上底長(zhǎng)120米,下底長(zhǎng)180米,上下底相距80米,在兩腰中點(diǎn)連線(虛線)處有一條橫向通道,上下底之間有兩條縱向通道,各通道的寬度相等.設(shè)通道的寬為x米.
(1)用含x的式子表示橫向通道的面積;
(2)當(dāng)三條通道的面積是梯形面積的八分之一時(shí),求通道的寬;
(3)根據(jù)設(shè)計(jì)的要求,通道的寬不能超過(guò)8米.如果修建通道的總費(fèi)用(萬(wàn)元)與通道的寬度成正比例關(guān)系,比例系數(shù)是5.5,花壇其余部分的綠化費(fèi)用為每平方米0.02萬(wàn)元,那么當(dāng)通道的寬度為多少米時(shí),所建花壇的總費(fèi)用最少?最少費(fèi)用是多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,要設(shè)計(jì)一個(gè)等腰梯形的花壇,花壇上底長(zhǎng)120米,下底長(zhǎng)180米,上下底相距80米,在兩腰中點(diǎn)連線(虛線)處有一條橫向甬道,上下底之間有兩條縱向甬道,各甬道的寬度相等.要使花壇栽花部分(圖示陰影部分)的面積達(dá)到10000平方米,求甬道的寬度時(shí),設(shè)甬道的寬為x米,可列方程得:
310x-2x2=10000
310x-2x2=10000

查看答案和解析>>

同步練習(xí)冊(cè)答案