【題目】如圖,將邊長(zhǎng)為6的正方形紙片ABCD沿EF折疊(點(diǎn)E,F分別在邊AB,CD上),使點(diǎn)B落在AD邊上的點(diǎn)M處(點(diǎn)M不與A,D重),點(diǎn)C落在點(diǎn)N處,MN與CD交于點(diǎn)P, 連接MB,當(dāng)點(diǎn)M在邊AD上移動(dòng)時(shí).有下列結(jié)論:①BM=EF;②0<PF<3 ;③∠AMB=∠BMP;④△PDM的周長(zhǎng)隨之改變.其中正確結(jié)論的序號(hào)是_______.(把你認(rèn)為正確的結(jié)論的序號(hào)都填上)
【答案】①②③
【解析】
作FG⊥AB于G,證明△ABM≌△GFE(AAS),得出BM=EF,①正確;
若點(diǎn)M與A重合,則C與D重合,P與D重合,PF=3;當(dāng)M與D重合時(shí),N與C重合,P與C重合,EF與AC重合,CF=0;得出0<PF<3,②正確;
由等腰三角形的性質(zhì)得出∠ABM=∠EMB,由∠ABC=∠EMN=90°,得出∠AMB=∠BMP,③正確;
可證△AEM∽△DMP,兩個(gè)三角形的周長(zhǎng)的比是AE:MD,設(shè)AM=x,根據(jù)勾股定理可以用x表示出MD的長(zhǎng)與△MAE的周長(zhǎng),根據(jù)周長(zhǎng)的比等于相似比,求出△PDM的周長(zhǎng)=12為定值,得出④不正確,即可得出結(jié)論.
解:作FG⊥AB于G,如圖所示:
則∠EGF=90°,GF=BC=AB,
∵四邊形ABCD是正方形,
∴∠ABC=∠A=90°,
∴∠ABM+∠AMB=90°,
由折疊的性質(zhì)得:BM⊥EF,BE=ME,∠EMN=∠ABC=90°,
∴∠ABM+∠GEF=∠ABM+∠AMB=90°,
∴∠AMB=∠GEF,
在△ABM和△GFE中,
,
∴△ABM≌△GFE(AAS),
∴BM=EF,①正確;
若點(diǎn)M與A重合,則C與D重合,P與D重合,PF=3;
當(dāng)M與D重合時(shí),N與C重合,P與C重合,EF與AC重合,CF=0;
∵點(diǎn)M不與A,D重合,
∴0<PF<3,②正確;
∵BE=ME,
∴∠ABM=∠EMB,
∵∠ABC=∠EMN=90°,
∴∠AMB=∠BMP,③正確;
設(shè)AM=x,則MD=6-x.
由折疊性質(zhì)可知,EM=BE=6-AE,
在Rt△AEM中,AE2+AM2=EM2,即AE2+x2=(6-AE)2,
整理得:AE2+x2=36-12AE+AE2,
∴AE= (36-x2),
又∵∠EMP=90°,
∴∠AME+∠DMP=90°.
∵∠AME+∠AEM=90°,
∴∠AEM=∠DMP.
又∵∠A=∠D,
∴△PDM∽△MAE.
∴,
∴△PDM的周長(zhǎng)=△MAE的周長(zhǎng) =12.
∴△PDM的周長(zhǎng)保持不變,④不正確;
故答案為:①②③.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,四邊形ABCD中,AB∥CD,∠B=90°,AC=AD.動(dòng)點(diǎn)P從點(diǎn)B出發(fā)沿折線B-A-D-C方向以1單位/秒的速度運(yùn)動(dòng),在整個(gè)運(yùn)動(dòng)過(guò)程中,△BCP的面積S與運(yùn)動(dòng)時(shí)間t(秒)的函數(shù)圖象如圖2所示,則AD等于( 。
A. 10B. C. 8D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)練習(xí)推鉛球,鉛球推出后在空中飛行的軌跡是一條拋物線,鉛球在離地面1米高的A處推出,達(dá)到最高點(diǎn)B時(shí)的高度是2.6米,推出的水平距離是4米,鉛球在地面上點(diǎn)C處著地
(1)根據(jù)如圖所示的直角坐標(biāo)系求拋物線的解析式;
(2)這個(gè)同學(xué)推出的鉛球有多遠(yuǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在銳角△ABC中,D、E分別是AB、BC的中點(diǎn),點(diǎn)F在AC上,且滿足∠AFE=∠A,DM∥EF交AC于點(diǎn)M.
(1)證明:DM=DA;
(2)如圖2,點(diǎn)G在BE上,且∠BDG=∠C,求證:△DEG∽△ECF;
(3)在圖2中,取CE上一點(diǎn)H,使得∠CFH=∠B,若BG=3,求EH的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l1的解析式為y=﹣3x+3,且l1與x軸交于點(diǎn)D,直線l2經(jīng)過(guò)點(diǎn)A、B,直線l1、l2交于點(diǎn)C.
(1)求直線l2的解析表達(dá)式;
(2)求△ADC的面積;
(3)在直線l2上存在異于點(diǎn)C的另一點(diǎn)P,使得△ADP與△ADC的面積相等,請(qǐng)求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:如果三角形有一邊上的中線長(zhǎng)恰好等于這邊的長(zhǎng),那么稱這個(gè)三角形為“和美三角形”,這條邊稱為“和美邊”,這條中線稱為“和美中線”.
理解:(1)請(qǐng)你在圖①中畫一個(gè)以AB為和美邊的和美三角形,使第三個(gè)頂點(diǎn)C落在格點(diǎn)上;
(2)如圖②,在Rt△ABC中,∠C=90°,.求證:△ABC是“和美三角形”.
運(yùn)用:(3)已知,等腰△ABC是“和美三角形”,AB=AC=20,求底邊BC的長(zhǎng)(畫圖解答).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)中的x和y滿足下表:
x | … | 0 | 1 | 2 | 3 | 4 | 5 | … |
y | … | 3 | 0 | -1 | 0 | m | 8 | … |
(1)可求得m的值為________;
(2)在坐標(biāo)系畫出該函數(shù)的圖象;
(3)當(dāng)y≥0時(shí),x的取值范圍為_____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲車從A地到B地,乙車從B地到A地,乙車先出發(fā)先到達(dá),甲乙兩車之間的距離y(千米)與行駛的時(shí)間x(小時(shí))的函數(shù)關(guān)系如圖所示,則下列說(shuō)法中不正確的是( 。
A.甲車的速度是80km/hB.乙車的速度是60km/h
C.甲車出發(fā)1h與乙車相遇D.乙車到達(dá)目的地時(shí)甲車離 B地10km
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小王是“新星廠”的一名工人,請(qǐng)你閱讀下列信息:
信息一:工人工作時(shí)間:每天上午8:00—12:00,下午14:00—18:00,每月工作25天;
信息二:小王生產(chǎn)甲、乙兩種產(chǎn)品的件數(shù)與所用時(shí)間的關(guān)系見(jiàn)下表:
生產(chǎn)甲種產(chǎn)品數(shù)(件) | 生產(chǎn)乙種產(chǎn)品數(shù)(件) | 所用時(shí)間(分鐘) |
10 | 10 | 350 |
30 | 20 | 850 |
信息三:按件計(jì)酬,每生產(chǎn)一件甲種產(chǎn)品得1.50元,每生產(chǎn)一件乙種產(chǎn)品得2.80元;
信息四:該廠工人每月收入由底薪和計(jì)酬工資兩部分構(gòu)成,小王每月的底薪為1900元.請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:
(1)小王每生產(chǎn)一件甲種產(chǎn)品和一件乙種產(chǎn)品分別需要多少分鐘;
(2)2018年1月工廠要求小王生產(chǎn)甲種產(chǎn)品的件數(shù)不少于60件,則小王該月收入最多是多少元?此時(shí)小王生產(chǎn)的甲、乙兩種產(chǎn)品分別是多少件?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com