【題目】如圖,⊙O的半徑OD⊥弦AB于點(diǎn)C,連結(jié)AO并延長(zhǎng)交⊙O于點(diǎn)E,連結(jié)EC.若AB=8,CD=2,則EC的長(zhǎng)為 .
【答案】2
【解析】解:連結(jié)BE,設(shè)⊙O的半徑為R,如圖, ∵OD⊥AB,
∴AC=BC= AB= ×8=4,
在Rt△AOC中,OA=R,OC=R﹣CD=R﹣2,
∵OC2+AC2=OA2 ,
∴(R﹣2)2+42=R2 , 解得R=5,
∴OC=5﹣2=3,
∴BE=2OC=6,
∵AE為直徑,
∴∠ABE=90°,
在Rt△BCE中,CE= = =2 .
故答案為:2 .
連結(jié)BE,設(shè)⊙O的半徑為R,由OD⊥AB,根據(jù)垂徑定理得AC=BC= AB=4,在Rt△AOC中,OA=R,OC=R﹣CD=R﹣2,根據(jù)勾股定理得到(R﹣2)2+42=R2 , 解得R=5,則OC=3,由于OC為△ABE的中位線,則BE=2OC=6,再根據(jù)圓周角定理得到∠ABE=90°,然后在Rt△BCE中利用勾股定理可計(jì)算出CE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)不透明的口袋中裝有4張卡片,卡片上分別標(biāo)有數(shù)字1、﹣2、﹣3、4,它們除了標(biāo)有的數(shù)字不同之外再也沒(méi)有其它區(qū)別,小芳從盒子中隨機(jī)抽取一張卡片.
(1)求小芳抽到負(fù)數(shù)的概率;
(2)若小明再?gòu)氖S嗟娜龔埧ㄆ须S機(jī)抽取一張,請(qǐng)你用樹(shù)狀圖或列表法,求小明和小芳兩人均抽到負(fù)數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象相交于A、B兩點(diǎn),則圖中使反比例函數(shù)的值小于一次函數(shù)的值的x的取值范圍是( )
A.x<﹣1
B.x>2
C.﹣1<x<0,或x>2
D.x<﹣1,或0<x<2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過(guò)點(diǎn)A,BD⊥直線m, CE⊥直線m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.
(2) 如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=,其中為任意銳角或鈍角.請(qǐng)問(wèn)結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說(shuō)明理由.
(3)拓展與應(yīng)用:如圖(3),D、E是D、A、E三點(diǎn)所在直線m上的兩動(dòng)點(diǎn)(D、A、E三點(diǎn)互不重合),點(diǎn)F為∠BAC平分線上的一點(diǎn),且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:拋物線的對(duì)稱(chēng)軸為x=﹣1,與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,其中A(﹣3,0)、C(0,﹣2).
(1)求這條拋物線的函數(shù)表達(dá)式.
(2)已知在對(duì)稱(chēng)軸上存在一點(diǎn)P,使得△PBC的周長(zhǎng)最小.請(qǐng)求出點(diǎn)P的坐標(biāo).
(3)若點(diǎn)D是線段OC上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)O、點(diǎn)C重合).過(guò)點(diǎn)D作DE∥PC交x軸于點(diǎn)E.連接PD、PE.設(shè)CD的長(zhǎng)為m,△PDE的面積為S.求S與m之間的函數(shù)關(guān)系式.試說(shuō)明S是否存在最大值,若存在,請(qǐng)求出最大值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣3,5),B(﹣2,1),C(﹣1,3).
(1)若△ABC經(jīng)過(guò)平移后得到△A1B1C1 , 已知點(diǎn)C1的坐標(biāo)為(4,0),寫(xiě)出頂點(diǎn)A1 , B1的坐標(biāo);
(2)若△ABC和△A2B2C2關(guān)于原點(diǎn)O成中心對(duì)稱(chēng)圖形,寫(xiě)出△A2B2C2的各頂點(diǎn)的坐標(biāo);
(3)將△ABC繞著點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)90°得到△A3B3C3 , 寫(xiě)出△A3B3C3的各頂點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1) 定義:直角三角形兩直角邊的平方和等于斜邊的平方.如:直角三角形的直角邊分別為3、4,則斜邊的平方=32+42=25.已知:Rt△ABC中,∠C=90°,AC=8,AB=10,直接寫(xiě)出BC2=__________________.
(2)應(yīng)用:已知正方形ABCD的邊長(zhǎng)為4,點(diǎn)P為AD邊上的一點(diǎn),AP= ,請(qǐng)利用“兩點(diǎn)之間線段最短”這一原理,在線段AC上畫(huà)出一點(diǎn)M,使MP+MD最小,并直接寫(xiě)出最小值的平方為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,從一張腰長(zhǎng)為60cm,頂角為120°的等腰三角形鐵皮OAB中剪出一個(gè)最大的扇形OCD,用此剪下的扇形鐵皮圍成一個(gè)圓錐的側(cè)面(不計(jì)損耗),則該圓錐的高為( )
A.10cm
B.15cm
C.10 cm
D.20 cm
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com