【題目】如圖,在平面直角坐標系中,點A在拋物線y=3x2-2x+2上運動.過點AACx軸于點C,以AC為對角線作矩形ABCD,連結BD,則對角線BD的最小值為_______

【答案】

【解析】

分析題意,回想一下二次函數(shù)圖象的性質、矩形的性質,先利用配方法將拋物線變形,進而得到拋物線的頂點坐標,接下來根據(jù)矩形的性質可得BDAC,由于AC的長等于點A的縱坐標,則當點A在拋物線的頂點處時,點Ax軸的距離最小,據(jù)此可求出答案.

根據(jù)拋物線的性質,則有,代入拋物線,∴,拋物線的頂點坐標為,∵四邊形ABCD為矩形,∴BDAC,ACx,AC的長等于點A的縱坐標,當點A在拋物線的頂點處時,點A軸的距離最小,最小值為,故對角線BD的最小值為.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】京杭大運河是世界文化遺產(chǎn).綜合實踐活動小組為了測出某段運河的河寬(岸沿是平行的),如圖,在岸邊分別選定了點A、B和點C、D,先用卷尺量得AB=160m,CD=40m,再用測角儀測得∠CAB=30°,DBA=60°,求該段運河的河寬(即CH的長).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:有一組鄰邊相等的凸四邊形叫做“準菱形”.利用該定義完成以下各題:

(1) 理解

填空:如圖1,在四邊形ABCD中,若     (填一種情況),則四邊形ABCD是“準菱形”;

(2)應用

證明:對角線相等且互相平分的“準菱形”是正方形;(請畫出圖形,寫出已知,求證并證明)

(3) 拓展

如圖2,在Rt△ABC中,∠ABC=90°,AB=2,BC=1,將Rt△ABC沿∠ABC的平分線BP方向平移得到△DEF,連接AD,BF,若平移后的四邊形ABFD是“準菱形”,求線段BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】近年來,無人機航拍測量的應用越來越廣泛.如圖,無人機從A處觀測得某建筑物頂點O時俯角為30°,繼續(xù)水平前行10米到達B處,測得俯角為45°,已知無人機的水平飛行高度為45米,則這棟樓的高度是多少米?(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為研究學生的課余愛好情況,采取抽樣調(diào)查的方法,從閱讀、運動、娛樂、上網(wǎng)等四個方面調(diào)查了若干學生的興趣愛好;并將調(diào)查的結果繪制成如下兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答下列問題:

1)在這次研究中,一共調(diào)查了______名學生;若該校共有1500名學生,估計全校愛好運動的學生共有______名;

2)補全條形統(tǒng)計圖,并計算閱讀部分圓心角是______度;

3)若該校九年級愛好閱讀的學生有150人,估計九年級有多少學生?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】超市銷售某種兒童玩具,如果每件利潤為40元(市場管理部門規(guī)定,該種玩具每件利潤不能超過60元),每天可售出50件.根據(jù)市場調(diào)查發(fā)現(xiàn),銷售單價每增加2元,每天銷售量會減少1件.設銷售單價增加元,每天售出件.

1)請寫出之間的函數(shù)表達式;

2)當為多少時,超市每天銷售這種玩具可獲利潤2250元?

3)設超市每天銷售這種玩具可獲利元,當為多少時最大,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形中,的中點,將沿翻折得到,延長,,垂足為,連接、.結論:;②;③;④;⑤.其中的正確的個數(shù)是(

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程:x2﹣(m﹣3)x﹣m=0.

(1)試判斷原方程根的情況;

(2)若拋物線y=x2﹣(m﹣3)x﹣m與x軸交于A(x1,0),B(x2,0)兩點,則A,B兩點間的距離是否存在最大或最小值?若存在,求出這個值;若不存在,請說明理由.

(友情提示:AB=|x2﹣x1|

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某玩具廠接的600件玩具的訂單后,決定由甲、乙兩車間共同完成生產(chǎn)任務,已知甲車間工作效率是乙車間的2倍,乙車間單獨完成此項生產(chǎn)任務比甲車間單獨完成多用10天.

1)求甲,乙兩車間平均每天各能制作多少件玩具;

2)兩車間同時開工3天后,臨時又增加了90件的玩具生產(chǎn)任務,為了使完成任務的總時間不超過7天,兩車間從第4天起各自提高工作效率,提高工作效率后甲車間工作效率仍是乙車間工作率的2倍,求乙車間提高效率后每天至少生產(chǎn)多少件玩具.

查看答案和解析>>

同步練習冊答案