【題目】分類討論在數(shù)學(xué)中既是一個(gè)重要的策略思想又是一個(gè)重要的數(shù)學(xué)方法.例如對(duì)于像x2+|x|-60這樣含有絕對(duì)值符號(hào)的方程,可采用如下的分類討論方法:

解:當(dāng)x≥0時(shí),原方程可化為x2+x-60.

解得:x1-3,x22.

x≥0,∴x2.

當(dāng)x0時(shí),原方程可化為x2-x-60,

解得:x13,x2-2.

x0,∴x-2.

綜上可得:原方程的解為x1-2,x22.

仿照上面的解法,解方程:x2+|2x-1|-40.

【答案】x1=-1,x2=.

【解析】

仿照上面的解法,分別討論2x-1≥02x-1<0時(shí),去掉絕對(duì)值,解一元二次方程,舍去不符合題意的根即可.

解:當(dāng)2x-1≥0,即x≥時(shí),

原方程可化為:x2+2x-1-4=0,即x2+2x-5=0

解得:x1=,x2=(舍去)

當(dāng)2x-1<0,即x<時(shí),

原方程可化為:x2-2x+1-4=0,即x2-2x-3=0

解得:x1=-1x2=3(舍去)

綜上可得:原方程的解為:x1=-1,x2=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直角△ABC中,∠C=90°,BC=3,AC=4,那么它的內(nèi)切圓半徑為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】實(shí)驗(yàn)探究:甲、乙兩個(gè)不透明的紙盒中分別裝有形狀、大小和質(zhì)地完全相同的兩張和三張卡片, 甲盒中兩張卡片上分別標(biāo)有數(shù)字12 乙盒中的三張卡片分別標(biāo)有數(shù)字3、45. 小紅從甲盒中隨機(jī)抽取一張卡片,并將其卡片上的數(shù)字作為十位數(shù)字,再從乙盒中隨機(jī)抽取一張卡片,將其卡片上的數(shù)字作為個(gè)位數(shù)字,從而組成一個(gè)兩位數(shù).

(1)請(qǐng)你用樹狀圖或列表的方式寫出所有組成的兩位數(shù);

(2)求出所組成兩位數(shù)是奇數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長是3,BP=CQ,連接AQ,DP交于點(diǎn)O,并分別與邊CD,BC交于點(diǎn)F,E,連接AE,下列結(jié)論:①AQ⊥DP;②OA2=OEOP;③S△AOD=S四邊形OECF;④當(dāng)BP=1時(shí),tan∠OAE=,其中正確結(jié)論的個(gè)數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y12x2-4x和一次函數(shù)y2-2x,規(guī)定:當(dāng)x任取一個(gè)值時(shí),x對(duì)應(yīng)的函數(shù)值分別為y1、y2,若y1≠y2,取y1y2中的較大值為M;若y1y2,則My1y2.下列說法錯(cuò)誤的是 ( )

A.當(dāng)x2時(shí),My1B.當(dāng)x0時(shí),Mx的增大而減小

C.M的最小值為-2D.M-1時(shí),則

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一條長為的鐵絲剪成兩段,并以每一段鐵絲的長度為周長做成一個(gè)正方形。

1)要使這兩個(gè)正方形的面積之和等于,那么這段鐵絲剪成兩段后的長度分別是多少?

2)兩個(gè)正方形的面積之和可能等于嗎?若能,求出兩段鐵絲的長度;若不能,請(qǐng)說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)ykx+b的圖象交反比例函數(shù)的圖象于點(diǎn)A2,﹣4)和點(diǎn)Bn,﹣2),交x軸于點(diǎn)C

1)求這兩個(gè)函數(shù)的表達(dá)式;

2)求AOB的面積;

3)請(qǐng)直接寫出使一次函數(shù)值大于反比例函數(shù)值的x的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方形網(wǎng)格上有6個(gè)三角形:①△ABC;②△BCD;③△BDE;④△BFG;⑤△FGH;⑥△EFK.其中②⑥中與①相似的是( )

A. ②③④ B. ③④⑤ C. ④⑤⑥ D. ②③⑥

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線經(jīng)過點(diǎn)A(-3,0),點(diǎn)B(0,),點(diǎn)P的坐標(biāo)為(1,0),與軸相切于點(diǎn)O,若將P沿軸向左平移,平移后得到(點(diǎn)P的對(duì)應(yīng)點(diǎn)為點(diǎn)P′),當(dāng)P′與直線相交時(shí),橫坐標(biāo)為整數(shù)的點(diǎn)P′共有( )

A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案