如圖1,在Rt△AOB中,∠AOB=90°,AO=,∠ABO=30°.動點P在線段AB上從點A向終點B以每秒個單位的速度運動,設運動時間為t秒.在直線OB 上取兩點M、N作等邊△PMN.
(1)求當?shù)冗叀鱌MN的頂點M運動到與點O重合時t的值.
(2)求等邊△PMN的邊長(用t的代數(shù)式表示);
(3)如果取OB的中點D,以OD為邊在Rt△AOB 內部作如圖2所示的矩形ODCE,點C在線段AB上.設等邊△PMN和矩形ODCE重疊部分的面積為S,請求出當0≤t≤2秒時S與t的函數(shù)關系式,并求出S的最大值.
(4)在(3)中,設PN與EC的交點為R,是否存在點R,使△ODR是等腰三角形?若存在,求出對應的t的值;若不存在,請說明理由.
解:(1)當?shù)冗叀鱌MN的頂點M運動到與點O重合時,
MP⊥AB,∵∠A=60°,∴AP=4,∴。(2分)

(2)∵AP=,∴BP=
又∵∠B=30°,∠PMB=600°,∴∠BPM=90°
tan∠B=
,即等邊△PMN的邊長為.(4分)
(3)①當時,如圖AP=,∴

,∴,
.
過F作FQ⊥0B于Q,則QN=4,∴EF=OQ=.
等邊△PMN和矩形ODCE重疊部分的面積為四邊形EFNO的面積,設為S1,

>0,∴S1隨t的增大而增大,
∴t=1時,,∴S1的最大值為.(7分)
②當<t<2時,如圖

在△EGK中,GE=,∴EK=,
∴S△GEK=.
∴等邊△PMN和矩形ODCE重疊部分的面積為四邊形EFNO的面積與△EGK的面積差,設為S2
.
,對稱軸為,
時,的最大值為.(9分)
時,。
綜上可知:當時,S的最大值為.(10分)
(4)過R作RH⊥OB于H,RH=,HN=4,

OH=,OD=12,DH=,
①OR=OD=12時,,
,,∴>2,不合題意舍去。
②DR=OD=12時,,
,∴>2,或<0,都不合題意舍去。
③OR=DR時,H為CD中點,OH=6,∴,∴。
綜上所述,時,△ODR是等腰三角形。(12分)
(1)利用直角三角形中30°所對的邊是斜邊的一半即可求出AP,進而求出t的值;
(2)利用△BPH∽△BAO,得出PH的長,再利用解直角三角形求出PN的長;
(3)根據(jù)當0≤t≤1時以及當t=1時和當t=2時,分別求出S的值;
(4)根據(jù)當D為頂點,OD=OR1=6時,當R2為頂點,OR2=DR2時,③當O為等腰△的頂點時,分別得出即可
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知關于x的二次函數(shù),這兩個二次函數(shù)的圖象中的一條與x軸交于A,B兩個不同的點.
(1)試判斷哪個二次函數(shù)的圖象可能經(jīng)過A,B兩點;
(2)若A點坐標為(-1,0),試求出B點坐標;
(3)在(2)的條件下,對于經(jīng)過A,B兩點的二次函數(shù),當x取何值時, y的值隨x值的增大而減。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A、B兩點,與y軸交于點C,點B坐標(﹣1,0),下面的四個結論:①OA=3;②a+b+c<0;③ac>0;④b2﹣4ac>0.其中正確的結論是【   】

A.①④      B.①③      C.②④      D.①②

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

將拋物線y=x2-2x向上平移3個單位,再向右平移4個單位得到的拋物線解析式為                            .

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,直線經(jīng)過點B(,2),且與x軸交于點A.將拋物線沿x軸作左右平移,記平移后的拋物線為C,其頂點為P.

(1)求∠BAO的度數(shù);
(2)拋物線C與y軸交于點E,與直線AB交于兩點,其中一個交點為F,當線段EF∥x軸時,求平移后的拋物線C對應的函數(shù)關系式;
(3)在拋物線平移過程中,將△PAB沿直線AB翻折得到△DAB,點D能否落在拋物線C上?如能,求出此時拋物線C頂點P的坐標;如不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)y=x2-5x-6.
(1)求此函數(shù)圖象的頂點A和其與x軸的交點B和C的坐標;
(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線與y軸交于C點,與x軸交于A、B兩點,點A的坐標是(-1,0),O是坐標原點,且
(1)求拋物線的函數(shù)表達式;
(2)直接寫出直線BC的函數(shù)表達式;
(3)如圖1,D為y軸的負半軸上的一點,且OD=2,以OD為邊作正方形ODEF.將正方形ODEF
以每秒1個單位的速度沿x軸的正方向移動,在運動過程中,設正方形ODEF與△OBC重疊部分的面積為s,運動的時間為t秒(0<t≤2).
求:①s與t之間的函數(shù)關系式; ②在運動過程中,s是否存在最大值?如果存在,直接寫出這個最大值;如果不存在,請說明理由.
(4)如圖2,點P(1,k)在直線BC上,點M在x軸上,點N在拋物線上,是否存在以A、M、
N、P為頂點的平行四邊形?若存在,請直接寫出M點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

二次函數(shù)y = ax2+ bx +c的圖象如圖所示, 則下列結論正確的是 (      )
A.a>0,b<0,c>0B. a<0,b<0,c>0
C.a<0,b>0,c<0D. a<0,b>0,c>0

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

二次函數(shù)的部分對應值如下表:


















二次函數(shù)圖象的對稱軸為      ,對應的函數(shù)值       

查看答案和解析>>

同步練習冊答案