(2008•常德)閱讀理解:
若p、q、m為整數(shù),且三次方程x3+px2+qx+m=0有整數(shù)解c,則將c代入方程得:c3+pc2+qc+m=0,移項(xiàng)得:m=-c3-pc2-qc,即有:m=c×(-c2-pc-q),由于-c2-pc-q與c及m都是整數(shù),所以c是m的因數(shù).上述過程說明:整數(shù)系數(shù)方程x3+px2+qx+m=0的整數(shù)解只可能是m的因數(shù).例如:方程x3+4x2+3x-2=0中-2的因數(shù)為±1和±2,將它們分別代入方程x3+4x2+3x-2=0進(jìn)行驗(yàn)證得:x=-2是該方程的整數(shù)解,-1,1,2不是方程的整數(shù)解.
解決問題:
(1)根據(jù)上面的學(xué)習(xí),請你確定方程x3+x2+5x+7=0的整數(shù)解只可能是哪幾個(gè)整數(shù)?
(2)方程x3-2x2-4x+3=0是否有整數(shù)解?若有,請求出其整數(shù)解;若沒有,請說明理由.
【答案】分析:(1)認(rèn)真學(xué)習(xí)題目給出的材料,掌握“整數(shù)系數(shù)方程x3+px2+qx+m=0的整數(shù)解只可能是m的因數(shù)”,再作答.
(2)根據(jù)分析(1)得出3的因數(shù)后再代入檢驗(yàn)可得出答案.
解答:解:(1)由閱讀理解可知:該方程如果有整數(shù)解,它只可能是7的因數(shù),而7的因數(shù)只有:1,-1,7,-7這四個(gè)數(shù).
(2)該方程有整數(shù)解.
方程的整數(shù)解只可能是3的因數(shù),即1,-1,3,-3,將它們分別代入方程x3-2x2-4x+3=0
進(jìn)行驗(yàn)證得:x=3是該方程的整數(shù)解.
點(diǎn)評:本題考查同學(xué)們的閱讀能力以及自主學(xué)習(xí)、自我探究的能力,該類型的題是近幾年的熱點(diǎn)考題.
認(rèn)真學(xué)習(xí)題目給出的材料,掌握“整數(shù)系數(shù)方程x3+px2+qx+m=0的整數(shù)解只可能是m的因數(shù)”是解答問題的基礎(chǔ).