【題目】小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)y=x+的圖象與性質(zhì)進(jìn)行了探究.

下面是小明的探究過程,請補(bǔ)充完整:

(1)函數(shù)y=x+的自變量x的取值范圍是_____

(2)下表列出了yx的幾組對應(yīng)值,請寫出m,n的值:m=_____,n=_____;

x

﹣3

﹣2

﹣1

1

2

3

4

y

﹣2

m

2

n

(3)如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點(diǎn),根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;

(4)結(jié)合函數(shù)的圖象,請完成:

①當(dāng)y=﹣時(shí),x=_____

②寫出該函數(shù)的一條性質(zhì)_____

③若方程x+=t有兩個(gè)不相等的實(shí)數(shù)根,則t的取值范圍是_____

【答案】(1)x≠0;(2);;(3)見解析;(4)﹣4或﹣;②函數(shù)圖象在第一、三象限且關(guān)于原點(diǎn)對稱;t<﹣2t>2.

【解析】

(1)由分母不為0,可得自變量x的取值范圍:x≠0.

(2)根據(jù)圖表可知,mn分別為當(dāng)x=3時(shí)的函數(shù)值,代入解析式:即可.

(3)根據(jù)描出的點(diǎn)連成平滑的曲線即可.

(4)①觀察函數(shù)圖像,結(jié)合(2)中的表格中,當(dāng)時(shí),x=4或可得;當(dāng)時(shí),x=-4或.

②觀察函數(shù)的圖象寫出函數(shù)的一條性質(zhì)即可(增減性、對稱性、圖像所在象限等).

③此方程的根可看作y=t的交點(diǎn),故方程有兩個(gè)不相等的實(shí)數(shù)根可看作是兩個(gè)函數(shù)的圖像有兩個(gè)交點(diǎn),觀察圖像可知,當(dāng)t>2或t<-2時(shí)兩函數(shù)的圖像有兩個(gè)交點(diǎn),故t的取值范圍為:t>2或t<-2.

解:(1)∵x在分母上,

x≠0.

故答案為:x≠0.

(2)當(dāng)x=時(shí),y=x+=

當(dāng)x=3時(shí),y=x+=

故答案為:;

(3)連點(diǎn)成線,畫出函數(shù)圖象

(4)①當(dāng)y=﹣時(shí),有x+=﹣,

解得:x1=﹣4,x2=﹣

故答案為:﹣4或﹣

②觀察函數(shù)圖象,可知:函數(shù)圖象在第一、三象限且關(guān)于原點(diǎn)對稱.

故答案為:函數(shù)圖象在第一、三象限且關(guān)于原點(diǎn)對稱.

③∵x+=t有兩個(gè)不相等的實(shí)數(shù)根,

t<﹣2t>2.

故答案為:t<﹣2t>2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知將邊長分別為a2bab)的長方形分割成四個(gè)全等的直角三角形,如圖1,再用這四個(gè)三角形拼成如圖2所示的正方形,中間形成一個(gè)正方形的空洞.經(jīng)測量得長方形的面積為24,正方形的邊長為5.試通過你獲取的信息,求a2+b2a2b2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ACDE是證明勾股定理時(shí)用到的一個(gè)圖形,ab、cRtABCRtBED邊長,易知AE=c,這時(shí)我們把關(guān)于x的形如ax+cx+b=0的一元二次方程稱為“勾系一元二次方程”.

請解決下列問題

寫出一個(gè)“勾系一元二次方程”;

求證關(guān)于x的“勾系一元二次方程”ax+cx+b=0必有實(shí)數(shù)根;

x=1是“勾系一元二次方程”ax+cx+b=0的一個(gè)根,且四邊形ACDE的周長是,ABC面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(問題情境)如圖①,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.

1)(問題解決)延長AD到點(diǎn)E使DE=AD,再連接BE(或?qū)ⅰ?/span>ACD繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形三邊的關(guān)系即可判斷出中線AD的取值范圍是   

(反思感悟)解題時(shí),條件中若出現(xiàn)中點(diǎn)、中線字樣,可以考慮構(gòu)造以該中點(diǎn)為對稱中心的中心對稱圖形,把分散的已知條件和所求證的結(jié)論集中到同個(gè)三角形中,從而解決問題.

2)(嘗試應(yīng)用)如圖②,△ABC中,∠BAC=90°ADBC邊上的中線,試猜想線段AB,ACAD之間的數(shù)量關(guān)系,并說明理由.

3)(拓展延伸)如圖③,△ABC中,∠BAC=90°,DBC的中點(diǎn),DMDNDMAB于點(diǎn)M,DNAC于點(diǎn)N,連接MN.當(dāng)BM=4,MN=5,AC=6時(shí),請直接寫出中線AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=kx+2x軸,y軸分別交于點(diǎn)A(﹣1,0)和點(diǎn)B,與反比例函數(shù)y=的圖象在第一象限內(nèi)交于點(diǎn)C(1,n).

(1)求一次函數(shù)y=kx+2與反比例函數(shù)y=的表達(dá)式;

(2)過x軸上的點(diǎn)D(a,0)作平行于y軸的直線l(a>1),分別與直線y=kx+2和雙曲線y=交于P、Q兩點(diǎn),且PQ=2QD,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖已知函數(shù)y=(k>0,x>0)的圖象與一次函數(shù)y=mx+5(m<0)的圖象相交不同的點(diǎn)A、B,過點(diǎn)AADx軸于點(diǎn)D,連接AO,其中點(diǎn)A的橫坐標(biāo)為x0,AOD的面積為2.

(1)求k的值及x0=4時(shí)m的值;

(2)記[x]表示為不超過x的最大整數(shù),例如:[1.4]=1,[2]=2,設(shè)t=ODDC,若﹣<m<﹣,求[m2t]值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD中,AB4,點(diǎn)E,F在對角線BD上,AECF

1)求證:ABE≌△CDF;

2)若∠ABE2BAE,求DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖所示,已知中,的平分線相交于點(diǎn),試猜想的關(guān)系,并證明.

(2)如圖所示,在中,分別是的外角平分線,試猜想的關(guān)系_____ (直接寫結(jié)果不要證明)

(3)如圖所示,已知的角平分線, 外角的平分線,且與交于點(diǎn),試猜想的關(guān)系_____ (直接寫結(jié)果不要證明)

1 2 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程有兩個(gè)實(shí)數(shù)根x1和x2,當(dāng)時(shí)則m的值為_____________。

查看答案和解析>>

同步練習(xí)冊答案