等腰梯形ABCD中,ABDC,AD=DC=10,∠DAB=60°,則此梯形的面積等于(  )
A.75B.
125
2
3
C.75
3
D.150
3
過點D作DE⊥AB于點E,過點C作CF⊥AB于點F,
∴DECF,
∵等腰梯形ABCD中,ABDC,
∴四邊形CDEF是平行四邊形,AD=BC=10,
∴EF=CD=10,
∵∠DAB=60°,
∴∠A=∠B=60°,
∴∠ADE=∠BCF=30°,
∴AE=
1
2
AD=5,BF=
1
2
BC=5,
∴AB=AE+EF+BF=5+10+5=20,DE=
AD2-AE2
=5
3

∴S梯形ABCD=
1
2
(CD+AB)•DE=
1
2
×(10+20)×5
3
=75
3

故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在等腰梯形ABCD中,ADBC,∠A=120°,AD=8,BC=14,則梯形的周長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知等腰△ABC中,AB=AC=13,BC=10
(1)如圖①,△ABC的面積=______,腰AC上的高BD=______;
(2)如圖②,P是底邊BC上任意一點,PE⊥AB于E,PF⊥AC于F,連接AP,不難發(fā)現(xiàn):△ABP的面積+△ACP的面積=△ABC的面積,據(jù)此式,你能求出PE+PF等于多少嗎?你有什么發(fā)現(xiàn)?
(3)如圖③四邊形BCGH是形狀、大小一定的等腰梯形,點P是下底BC上一動點,試問:點P到兩腰的距離之和是否為一定值?簡述理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知在梯形ABCD中,ADBC,AB=CD,BC=8,∠B=60°,點M是邊BC的中點,點E、F分別是邊AB、CD上的兩個動點(點E與點A、B不重合,點F與點C、D不重合),且∠EMF=120°.
(1)求證:ME=MF;
(2)試判斷當(dāng)點E、F分別在邊AB、CD上移動時,五邊形AEMFD的面積的大小是否會改變,請證明你的結(jié)論;
(3)如果點E、F恰好是邊AB、CD的中點,求邊AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖所示,梯形ABCD中,ABCD,且AB+CD=BC,M是AD的中點.
求證:BM⊥CM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在梯形ABCD中,ADBC,對角線AC、BD相交于點O,若S△AOD:S△ACD=1:3,則S△AOD:S△BOC=______;若S△AOD=1,則梯形ABCD的面積為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,梯形ABCD中,ADBC,AC⊥BD,AD=3,BC=7,E在BC上,CE=2,則DE=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在等腰梯形ABCD中,ADBC,AB=AD=CD,∠ABC=60°,延長AD到E,使DE=AD,延長DC到F,使DC=CF,連接BE、BF和EF.
(1)求證:△ABE≌△CFB;
(2)如果AD=6,tan∠EBC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

梯形ABCD中,ADBC,腰AB、CD的中點連線EF=5,且AD=3,則BC=______.

查看答案和解析>>

同步練習(xí)冊答案