【題目】一茶葉專賣店經(jīng)銷某種品牌的茶葉,該茶葉的成本價(jià)是80元/kg,銷售單價(jià)不低于120元/kg.且不高于180元/kg,經(jīng)銷一段時(shí)間后得到如下數(shù)據(jù):

銷售單價(jià)x(元/kg)

120

130

180

每天銷量y(kg)

100

95

70

設(shè)y與x的關(guān)系是我們所學(xué)過的某一種函數(shù)關(guān)系.
(1)直接寫出y與x的函數(shù)關(guān)系式,并指出自變量x的取值范圍;
(2)當(dāng)銷售單價(jià)為多少時(shí),銷售利潤(rùn)最大?最大利潤(rùn)是多少?

【答案】
(1)

解:∵由表格可知:銷售單價(jià)沒漲10元,就少銷售5kg,

∴y與x是一次函數(shù)關(guān)系,

∴y與x的函數(shù)關(guān)系式為:y=100﹣0.5(x﹣120)=﹣0.5x+160,

∵銷售單價(jià)不低于120元/kg.且不高于180元/kg,

∴自變量x的取值范圍為:120≤x≤180;


(2)

解:設(shè)銷售利潤(rùn)為w元,

則w=(x﹣80)(﹣0.5x+160)=﹣ x2+200x﹣12800=﹣ (x﹣200)2+7200,

∵a=﹣ <0,

∴當(dāng)x<200時(shí),y隨x的增大而增大,

∴當(dāng)x=180時(shí),銷售利潤(rùn)最大,最大利潤(rùn)是:w=﹣ (180﹣200)2+7200=7000(元),

答:當(dāng)銷售單價(jià)為180元時(shí),銷售利潤(rùn)最大,最大利潤(rùn)是7000元


【解析】(1)首先由表格可知:銷售單價(jià)沒漲10元,就少銷售5kg,即可得y與x是一次函數(shù)關(guān)系,則可求得答案;(2)首先設(shè)銷售利潤(rùn)為w元,根據(jù)題意可得二次函數(shù),然后求最值即可.此題考查了二次函數(shù)與一次函數(shù)的應(yīng)用.注意理解題意,找到等量關(guān)系是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由于持續(xù)高溫和連日無雨,某水庫(kù)的蓄水量隨時(shí)間的增加而減少,已知原有蓄水量y1(萬m3)與干旱持續(xù)時(shí)間x(天)的關(guān)系如圖中線段l1所示,針對(duì)這種干旱情況,從第20天開始向水庫(kù)注水,注水量y2(萬m3)與時(shí)間x(天)的關(guān)系如圖中線段l2所示(不考慮其它因素).

(1)求原有蓄水量y1(萬m3)與時(shí)間x(天)的函數(shù)關(guān)系式,并求當(dāng)x=20時(shí)的水庫(kù)總蓄水量.

(2)求當(dāng)0≤x≤60時(shí),水庫(kù)的總蓄水量y(萬m3)與時(shí)間x(天)的函數(shù)關(guān)系式(注明x的范圍),若總蓄水量不多于900m3為嚴(yán)重干旱,直接寫出發(fā)生嚴(yán)重干旱時(shí)x的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,池塘邊有一塊長(zhǎng)為18m,寬為10m的長(zhǎng)方形土地,現(xiàn)在將其 余三面留出寬都是xm的小路,中間余下的長(zhǎng)方形部分做菜地,用整式表示:

(1)菜地的長(zhǎng)a m,寬b m;

(2)菜地面積S m2

(3)當(dāng)x0.5m時(shí),菜地面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了加強(qiáng)學(xué)生的交通安全意識(shí),某中學(xué)和交警大隊(duì)聯(lián)合舉行了我當(dāng)一日小交警活動(dòng),星期天選派部分學(xué)生到交通路口值勤,協(xié)助交通警察維護(hù)交通秩序.若每一個(gè)路口安排4人,那么還剩下78人;若每個(gè)路口安排8人,那么最后一個(gè)路口不足8人,但不少于4人.求這個(gè)中學(xué)共選派值勤學(xué)生多少人?共有多少個(gè)交通路口安排值勤?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了提高科技創(chuàng)新意識(shí),我市某中學(xué)在“2016年科技節(jié)”活動(dòng)中舉行科技比賽,包括“航模”、“機(jī)器人”、“環(huán)保”、“建!彼膫(gè)類別(每個(gè)學(xué)生只能參加一個(gè)類別的比賽),各類別參賽人數(shù)統(tǒng)計(jì)如圖:

請(qǐng)根據(jù)以上信息,解答下列問題:
(1)全體參賽的學(xué)生共有人,“建模”在扇形統(tǒng)計(jì)圖中的圓心角是°;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)在比賽結(jié)果中,獲得“環(huán)!鳖愐坏泉(jiǎng)的學(xué)生為1名男生和2名女生,獲得“建!鳖愐坏泉(jiǎng)的學(xué)生為1名男生和1名女生,現(xiàn)從這兩類獲得一等獎(jiǎng)的學(xué)生中各隨機(jī)選取1名學(xué)生參加市級(jí)“環(huán)保建!笨疾旎顒(dòng),問選取的兩人中恰為1男生1女生的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,航空母艦始終以40千米/時(shí)的速度由西向東航行,飛機(jī)以800千米/時(shí)的速度從艦上起飛,向西航行執(zhí)行任務(wù),如果飛機(jī)在空中最多能連續(xù)飛行4個(gè)小時(shí),那么它在起飛_____小時(shí)后就必須返航,才能安全停在艦上?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為9,將正方形折疊,使頂點(diǎn)D落在BC邊上的點(diǎn)E處,折痕為GH.若BE:EC=2:1,則線段CH的長(zhǎng)是( 。

A.3
B.4
C.5
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小東根據(jù)學(xué)習(xí)一次函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y=|2x﹣1|的圖象和性質(zhì)進(jìn)行了探究.下面是小東的探究過程,請(qǐng)補(bǔ)充完成:

(1)函數(shù)y=|2x﹣1|的自變量x的取值范圍是   

(2)已知:

當(dāng)x=時(shí),y=|2x﹣1|=0;

當(dāng)x>時(shí),y=|2x﹣1|=2x﹣1

當(dāng)x<時(shí),y=|2x﹣1|=1﹣2x;

顯然,均為某個(gè)一次函數(shù)的一部分.

(3)由(2)的分析,取5個(gè)點(diǎn)可畫出此函數(shù)的圖象,請(qǐng)你幫小東確定下表中第5個(gè)點(diǎn)的坐標(biāo)(m,n),其中m=   ;n=   ;:

x

﹣2

0

1

m

y

5

1

0

1

n

(4)在平面直角坐標(biāo)系xOy中,作出函數(shù)y=|2x﹣1|的圖象;

(5)根據(jù)函數(shù)的圖象,寫出函數(shù)y=|2x﹣1|的一條性質(zhì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】填寫理由:

已知:如圖,ABC是直線,1=115°,D=65°.

求證:ABDE.

證明:∵ABC是一直線,(已知)

∴∠1+2=180°( )

∵∠1=115°(已知)

∴∠2=65°

又∵∠D=65°(已知)

∴∠2=D

( )

查看答案和解析>>

同步練習(xí)冊(cè)答案